
REFERENCE MANUAL for
Speech Signal Processing Toolkit Ver. 3.6

December 25, 2012

The help message for every command can be obtained with the option “-h”. The help message
brings explanation of the command, how to use, as well as its options.

Example: for the command mcep (% is the shell prompt)

> % mcep -h

>

> mcep - mel cepstral analysis

>

> usage:

> mcep [options] [infile] > stdout

> options:

> -a a : all-pass constant [0.35]

> -m m : order of mel cepstrum [25]

> -l l : frame length [256]

> -h : print this message

> (level 2)

> -i i : minimum iteration [2]

> -j j : maximum iteration [30]

> -d d : end condition [0.001]

> -e e : small value added to periodgram [0]

> infile:

> windowed sequences (float) [stdin]

> stdout:

> mel-cepstrum (float)

For more information related to this toolkit, please refer to http://sourceforge.net/projects/sp-tk/.
In this site, the “Examples of Using Speech Signal Processing Toolkit” documentation file can be
downloaded. If you have any bug reports, comments, or questions related this toolkit, please use
the bug-tracker on SPTK website. We will try to answer every question, but we cannot guarantee
it.

http://sourceforge.net/projects/sp-tk/
http://sourceforge.net/tracker/?group_id=176586

Contents

acep — adaptive cepstral analysis . 1
acorr — obtain autocorrelation sequence . 3
agcep — adaptive generalized cepstral analysis 4
amcep — adaptive mel-cepstral analysis . 6
average — calculate mean for each block . 8
b2mc — transform MLSA digital filter coefficients to mel-cepstrum 9
bcp — block copy . 10
bcut — binary file cut . 12
bell — ring a bell . 14
c2acr — transform cepstrum to autocorrelation 15
c2ir — cepstrum to minimum phase impulse response 16
c2sp — transform cepstrum to spectrum . 17
cdist — calculation of cepstral distance . 18
clip — data clipping . 20
da — play 16-bit linear PCM data . 21
dct — DCT-II . 23
decimate — decimation (data skipping) . 25
delay — delay sequence . 26
delta — delta calculation . 27
df2 — second order standard form digital filter 31
dfs — digital filter in standard form . 32
dmp — binary file dump . 34
dtw — dynamic time warping . 36
ds — down-sampling . 39
echo2 — echo arguments to the standard error 40
excite — generate excitation . 41
extract — extract vector . 42
fd — file dump . 43
fdrw — draw a graph . 45
fft — FFT for complex sequence . 47
fft2 — 2-dimensional FFT for complex sequence 48
fftcep — FFT cepstral analysis . 51
fftr — FFT for real sequence . 52
fftr2 — 2-dimensional FFT for real sequence 53
fig — plot a graph . 55

i

ii CONTENTS

frame — extract frame from data sequence . 62
freqt — frequency transformation . 63
gc2gc — generalized cepstral transformation . 64
gcep — generalized cepstral analysis . 66
glogsp — draw a log spectrum graph . 68
glsadf — GLSA digital filter for speech synthesis 70
gmm — GMM parameter estimation . 72
gmmp — calculation of GMM log-probability . 75
gnorm — gain normalization . 77
grlogsp — draw a running log spectrum graph . 78
grpdelay — group delay of digital filter . 81
gseries — draw a discrete series . 82
gwave — draw a waveform . 84
histogram — histogram . 86
idct — Inverse DCT-II . 87
ifft — inverse FFT for complex sequence . 89
ifft2 — 2-dimensional inverse FFT for complex sequence 90
ifftr — inverse FFT for real sequence . 92
ignorm — inverse gain normalization . 93
impulse — generate impulse sequence . 94
imsvq — decoder of multi stage vector quantization 95
interpolate — interpolation of data sequence . 96
ivq — decoder of vector quantization . 97
lbg — LBG algorithm for vector quantizer design 98
levdur — solve an autocorrelation normal equation using Levinson-Durbin method 102
linear intpl — linear interpolation of data . 104
lmadf — LMA digital filter for speech synthesis 106
lpc — LPC analysis using Levinson-Durbin method 109
lpc2c — transform LPC to cepstrum . 110
lpc2lsp — transform LPC to LSP . 112
lpc2par — transform LPC to PARCOR . 114
lsp2lpc — transform LSP to LPC . 116
lspcheck — check stability and rearrange LSP . 117
lspdf — LSP speech synthesis digital filter . 118
ltcdf — all-pole lattice digital filter for speech synthesis 119
mc2b — transform mel-cepstrum to MLSA digital filter coefficients 120
mcep — mel cepstral analysis . 121
merge — data merge . 123
mfcc — mel-frequency cepstral analysis . 125
mgc2mgc — frequency and generalized cepstral transformation 128
mgc2mgclsp — transform MGC to MGC-LSP . 130
mgc2sp — transform mel-generalized cepstrum to spectrum 132
mgcep — mel-generalized cepstral analysis . 134
mgclsp2mgc — transform MGC-LSP to MGC . 137
mglsadf — MGLSA digital filter for speech synthesis 139

CONTENTS iii

minmax — find minimum and maximum values . 142
mlpg — obtains parameter sequence from PDF sequence 144
mlsacheck — check stability of MLSA filter . 147
mlsadf — MLSA digital filter for speech synthesis 149
msvq — multi stage vector quantization . 152
nan — data check . 153
norm0 — normalize coefficients . 154
nrand — generate normal distributed random value 155
par2lpc — transform PARCOR to LPC . 156
pca — principal component analysis . 157
pcas — calculate principal component scores 158
phase — transform real sequence to phase . 159
pitch — pitch extraction . 161
poledf — all pole digital filter for speech synthesis 162
psgr — XY-plotter simulator for EPSF . 163
ramp — generate ramp sequence . 165
raw2wav — raw to wav (RIFF) . 166
reverse — reverse the order of data in each block 167
rmse — calculation of root mean squared error 168
root pol — calculate roots of a polynomial equation 169
sin — generate sinusoidal sequence . 171
smcep — mel-cepstral analysis using 2nd order all-pass filter 172
snr — evaluate SNR and segmental SNR . 174
sopr — execute scalar operations . 176
spec — transform real sequence to log spectrum 179
step — generate step sequence . 182
swab — swap bytes . 183
symmetrize — symmetrize the sequence of data . 184
train — generate pulse sequence . 185
transpose — transpose a matrix . 186
uels — unbiased estimation of log spectrum . 187
ulaw — µ-law compress/decompress . 189
us — up-sampling . 190
us16 — up-sampling from 10 or 12 kHz to 16 kHz 192
uscd — up/down-sampling from 8, 10, 12, or 16 kHz to 11.025, 22.05, or 44.1 kHz193
vopr — execute vector operations . 194
vq — vector quantization . 197
vstat — vector statistics calculation . 198
vsum — summation of vector . 201
wav2raw — wav (RIFF) to raw . 203
window — data windowing . 204
x2x — data type transformation . 206
xgr — XY-plotter simulator for X-window system 208
zcross — zero cross . 210
zerodf — all zero digital filter for speech synthesis 211

iv CONTENTS

REFERENCESREFERENCES . 213
INDEX of TOPICS . 217

ACEP Speech Signal Processing Toolkit ACEP 1

NAME

acep – adaptive cepstral analysis(4; 5)

SYNOPSIS

acep [–m M] [–l L] [–t T] [–k K] [–p P] [–s] [–e E] [–P Pa]

[pefile] < infile

DESCRIPTION

acep uses adaptive cepstral analysis (4), (5), to calculate cepstral coefficients from un-
framed float data from standard input, sending the result to standard output. If pefile is
given, acep writes the prediction error is written to that file.

Both input and output files are in float format.

The algorithm to calculate recursively the adaptive cepstral coefficients is

c(n+1) = c(n) − µ(n)∇̂ε(n)
τ

∇̂ε(n)
0 = −2e(n)e(n) (τ = 0)

∇̂ε(n)
τ = −2(1 − τ)

n∑
i=−∞
τn−ie(i)e(i) (0 ≤ τ < 1)

∇̂ε(n)
τ = τ∇̂ε(n−1)

τ − 2(1 − τ)e(n)e(n)

µ(n) =
k

Mε(n)

ε(n) = λε(n−1) + (1 − λ)e2(n)

where c = [c(1), . . . , c(M)]>, e(n) = [e(n− 1), . . . , e(n−M)]>. Also, the gain is expressed
by c(0) as follows:

c(0) =
1
2

log ε(n)

In Figure 1, the system for adaptive cepstral analysis is shown.

LMA filter
x(n) e(n)

1/D(z) -q
��

���

Figure 1: Adaptive cepstral analysis system

2 ACEP Speech Signal Processing Toolkit ACEP

OPTIONS

–m M order of cepstrum [25]
–l L leakage factor λ [0.98]
–t T momentum constant τ [0.9]
–k K step size k [0.1]
–p P output period of cepstrum [1]
–s output smoothed cepstrum [FALSE]
–e E minimum value for ε(n) [0.0]
–P Pa number of coefficients of the LMA filter using the Padé approx-

imation. Pa should be 4 or 5.
[4]

EXAMPLE

In this example, the speech data is in the file data.f in float format, and the cepstral
coefficients are written in the file data.acep for every block of 100 samples, and the
prediction error can be found in data.er.

acep -m 15 -p 100 data.er < data.f > data.acep

SEE ALSO

uels, gcep, mcep, mgcep, amcep, agcep, lmadf

ACORR Speech Signal Processing Toolkit ACORR 3

NAME

acorr – obtain autocorrelation sequence

SYNOPSIS

acorr [–m M] [–l L] [infile]

DESCRIPTION

acorr calculates the m-th order autocorrelation function sequence for each frame of float
data from infile (or standard input), sending the result to standard output. Namely, the
input data is given by

x(0), x(1), . . . , x(L − 1),

and the autocorrelation is evaluated as

r(k) =
L−1−k∑
m=0

x(m)x(m + k), k = 0, 1, . . . ,M,

and the output is the following autocorrelation function sequence,

r(0), r(1), . . . , r(M)

Both input and output files are in float format.

OPTIONS

–m M order of sequence [25]
–l L frame length [256]

EXAMPLE

In the example below, the input file data.f is in float format. Here, the frame length and
period are of 256 and 100, respectively. Also, every frame is passed through a Blackman
window and the autocorrelation function sequence is sent to data.acorr.

frame -l 256 -p 100 < data.f | window | acorr -m 10 > data.acorr

SEE ALSO

c2acr, levdur

4 AGCEP Speech Signal Processing Toolkit AGCEP

NAME

agcep – adaptive generalized cepstral analysis(9)

SYNOPSIS

agcep [–m M] [–c C] [–l L] [–t T] [–k K] [–p P]
[–s] [–n] [–e E] [pefile] < infile

DESCRIPTION

agcep uses adaptive generalized cepstral analysis (9) to calculate cepstral coefficients
cγ(m) from unframed float data in the standard input, and sends the result to standard
output. In the case pefile is given, agcep writes the prediction error to this file.

Both input and output files are in float format.

The algorithm which recursively calculates the adaptive generalized cepstral coefficients
is shown below.

c(n+1)
γ = c(n)

γ − µ(n)∇̂ε(n)
τ

∇̂ε(n)
0 = −2eγ(n)e(n)

γ (τ = 0)

∇̂ε(n)
τ = −2(1 − τ)

n∑
i=−∞
τn−ieγ(i)e(i)

γ (0 ≤ τ < 1)

∇̂ε(n)
τ = τ∇̂ε(n−1)

τ − 2(1 − τ)eγ(n)e(n)
γ

µ(n) =
k

Mε(n)

ε(n) = λε(n−1) + (1 − λ)e2
γ(n)

where cγ = [cγ(1), . . . , cγ(M)]>, eγ = [eγ(n − 1), . . . , eγ(n − M)]>. The signal eγ(n) is
obtained by passing the input signal x(n) through the filter (1 + γF(z))−

1
γ−1, where

F(z) =
M∑

m=1

cγ(m)z−m.

In the case where γ = −1/n and n is a natural number, the adaptive generalized cepstral
analysis system is as shown in Figure 1. In the case n = 1, the adaptive generalized
cepstral analysis is equivalent to the LMS linear predictor. Also, when n → ∞, the
adaptive generalized cepstral analysis is equivalent to the adaptive cepstral analysis.

AGCEP Speech Signal Processing Toolkit AGCEP 5

-exp F(z)
x(n) e(n) = eγ(n)

-
e(n)x(n) = eγ(n)

1 − F(z)

-

(c) γ = 0

(b) γ = −1

(a) −1 ≤ γ ≤ 0

1 + γF(z)
eγ(n)x(n) e(n)

(1 + γF(z))−
1
γ−1

Figure 1: Adaptive generalized cepstral analysis system

OPTIONS

–m M order of generalized cepstrum [25]
–c C power parameter γ = −1/C for generalized cepstrum [1]
–l L leakage factor λ [0.98]
–t T momentum constant τ [0.9]
–k K step size k [0.1]
–p P output period of generalized cepstrum [1]
–s output smoothed generalized cepstrum [FALSE]
–n output normalized generalized cepstrum [FALSE]
–e E minimum value for ε(n) [0.0]

EXAMPLE

In this example, the speech data is in the file data.f in float format and the prediction error
can be found in data.er. The cepstral coefficients are written to the file data.agcep,

agcep -m 15 data.er < data.f > data.agcep

SEE ALSO

acep, amcep, glsadf

6 AMCEP Speech Signal Processing Toolkit AMCEP

NAME

amcep – adaptive mel-cepstral analysis(11; 12)

SYNOPSIS

amcep [–m M] [–a A] [–l L] [–t T] [–k K] [–p P] [–s] [–e E]

[–P Pa] [pefile] < infile

DESCRIPTION

amcep uses adaptive mel-cepstral analysis to calculate mel-cepstral coefficients cα(m)
from unframed float data in the standard input, sending the result to standard output. In
the case pefile is given, amcep writes the prediction error to this file.

Both input and output files are in float format.

The algorithm which recursively calculates the adaptive mel-cepstral coefficients b(m) is
shown below

c(n+1) = b(n) − µ(n)∇̂ε(n)
τ

∇̂ε(n)
0 = −2e(n)e(n)

Φ
(τ = 0)

∇̂ε(n)
τ = −2(1 − τ)

n∑
i=−∞
τn−ie(i)e(i)

Φ
(0 ≤ τ < 1)

∇̂ε(n)
τ = τ∇̂ε(n−1)

τ − 2(1 − τ)e(n)e(n)
Φ

µ(n) =
k

Mε(n)

ε(n) = λε(n−1) + (1 − λ)e2(n)

1

��
QQ

1 − α2 QQ
��α JJ

α JJ

α

z−1 z−1 z−1 z−1

e(n)

- h+? r r - h+ r - h+r r�
�

�
���

? @
@

@
@@I

h+−
�

�
�

���

? @
@

@
@@I

h+−
�

�
�

���

-r
?

e1(n)
?

e2(n)
?

e3(n)

Figure 1: Filter Φm(z)

where b = [b(1), b(2), . . . , b(M)]>, e(n)
Φ
= [e1(n), e2(n), . . . , eM(n)]T , em(n) is the output of

the inverse filter, which is obtained as shown in Figure 1, passing e(n) through the filter
Φm(z).

AMCEP Speech Signal Processing Toolkit AMCEP 7

The coefficients b(m) are equivalent to the coefficients of the MLSA filter, and the mel-
cepstral coefficients cα(m) can be obtained from b(m) through a linear transformation
(refer to b2mc and mc2b).

Thus, the adaptive mel-cepstral analysis system is shown in figure 2.

The filter 1/D(z) is realized by a MLSA filter.

1/D(z) = exp
M∑

m=1

−b(m)Φm(z) -r
Φm(z)�

��

�
���

x(n) e(n)

Figure 2: Adaptive mel-cepstral analysis system

OPTIONS

–m M order of mel-cepstrum [25]
–a A all-pass constant α [0.35]
–l L leakage factor λ [0.98]
–t T momentum constant τ [0.9]
–k K step size k [0.1]
–p P output period of mel-cepstrum [1]
–s output smoothed mel-cepstrum [FALSE]
–e E minimum value for ε(n) [0.0]
–P Pa number of coefficients of the MLSA filter using the Padé ap-

proximation. Pa should be 4 or 5.
[4]

EXAMPLE

In this example, the speech data is in the file data.f in float format, and the adaptive mel-
cepstral coefficients are written to the file data.amcep for every block of 100 samples:

amcep -m 15 -p 100 < data.f > data.amcep

SEE ALSO

acep, agcep, mc2b, b2mc, mlsadf

8 AVERAGE Speech Signal Processing Toolkit AVERAGE

NAME

average – calculate mean for each block

SYNOPSIS

average [–l L] [–n N] [infile]

DESCRIPTION

average calculates the mean value for every L-length block from infile (or standard in-
put), sending the result to standard output.

For the input data
x(0), x(1), . . . , x(L − 1)

the output is calculated as follows:

x(0) + x(1) + . . . + x(L − 1)
L

If L = 0, then the whole input data is used to calculate the average.

Both input and output files are in float format.

OPTIONS

–l L number of items contained 1 frame [0]
–n N order of items contained 1 frame [L-1]

EXAMPLE

The output file data.av contains the mean taken from the whole data in data.f, in float
format.

average < data.f > data.av

SEE ALSO

histogram, vsum, vstat

B2MC Speech Signal Processing Toolkit B2MC 9

NAME

b2mc – transform MLSA digital filter coefficients to mel-cepstrum

SYNOPSIS

b2mc [–m M] [–a A] [infile]

DESCRIPTION

b2mc calculates mel-cepstral coefficients cα(m) from MLSA filter coefficients b(m) in
the infile (or standard input), sending the result to standard output.

Input and output data are in float format.

The transformation from b(m) coefficients to mel-cepstral coefficients cα(m) is as fol-
lows:

cα(m) =

 b(M) m = M
b(m) + αb(m + 1) 0 ≤ m < M

The command b2mc and mc2b are in inverse conversion relationship to each other.

OPTIONS

–m M order of mel cepstrum [25]
–a A all-pass constant α [0.35]

EXAMPLE

The example below converts the coefficients of an MLSA filter, which are in file data.b
in float format, into mel-cepstral coefficients in file data.mcep, with M = 15 and α =
0.35.

b2mc -m 15 < data.b > data.mcep

SEE ALSO

mc2b, mcep, mlsadf

10 BCP Speech Signal Processing Toolkit BCP

NAME

bcp – block copy

SYNOPSIS

bcp [–l l] [–L L] [–n n] [–N N] [–s s] [–S S] [–e e] [–f f]

[+type] [infile]

DESCRIPTION

bcp copies data blocks from infile (or standard input) to standard output, and reformats
them according to the command line options given.

If the input format is ASCII, the basic input unit is a sequence of letters and the output
block is partitioned with carriage returns.

0 s e l-1,n

l,n+1

0 S

L,N+1
L-1,N

f f f f ff f

Input

Output

Figure 3: Example of the bcp command

OPTIONS

–l l number of items contained 1 block [512]
–L L number of destination block size [N/A]
–n n order of items contained 1 block [l-1]
–N N order of destination block size [N/A]
–s s start number [0]
–S S start number in destination block [0]
–e e end number [EOF]
–f f fill into empty block [0]

BCP Speech Signal Processing Toolkit BCP 11

+t data type

c char (1 byte) C unsigned char (1 byte)
s short (2 bytes) S unsigned short (2 bytes)
i3 int (3 bytes) I3 unsigned int (3 bytes)
i int (4 bytes) I unsigned int (4 bytes)
l long (4 bytes) L unsigned long (4 bytes)
le long long (8 bytes) LE unsigned long long (8 bytes)
f float (4 bytes) d double (8 bytes)
a ASCII letter sequence

[f]

EXAMPLE

Assume that a(0), a(1), a(2), ... , a(20) is contained in the input file data.f, written in float
format. If one wants to copy the array a(1), a(2), ... , a(10), the following command can
be used.

bcp +f -l 21 -s 1 -e 10 data.f > data.bcp

A different example with respect to the same input file data.f follows

bcp +f -l 21 -s 3 -e 5 -S 6 -L 10 data.f > data.bcp

In this example, the output block is

0, 0, 0, 0, 0, 0, a(3), a(4), a(5), 0

SEE ALSO

bcut, merge, reverse

12 BCUT Speech Signal Processing Toolkit BCUT

NAME

bcut – binary file cut

SYNOPSIS

bcut [–s S] [–e E] [–l L] [–n N] [+type] [infile]

DESCRIPTION

bcut copies a selected portion of infile (or standard input) to standard output.

OPTIONS

–s S start number [0]
–e E end number [EOF]
–l L block length [1]
–n N block order [L-1]
+t input data format

c char (1 byte) C unsigned char (1 byte)
s short (2 bytes) S unsigned short (2 bytes)
i3 int (3 bytes) I3 unsigned int (3 bytes)
i int (4 bytes) I unsigned int (4 bytes)
l long (4 bytes) L unsigned long (4 bytes)
le long long (8 bytes) LE unsigned long long (8 bytes)
f float (4 bytes) d double (8 bytes)

[f]

EXAMPLE

In the example below, the input file data.f in float format is cut from the 3rd to the 5th
float point:

bcut +f -s 3 -e 5 data.f > data.cut

For example, if the file data.f had the following data

1, 2, 3, 4, 5, 6, 7

the output file data.cut would be
4, 5, 6.

If the block length is assigned:

bcut +f -l 2 data.f -s 1 -e 2 > data.cut

BCUT Speech Signal Processing Toolkit BCUT 13

then, the output file would contain the following data,

3, 4, 5, 6

If the stationary part, say from the sample 100, of the output of a digital filter excited
with pulse train is desired, then the following command can be used:

train -p 10 -l 256 | dfs -a 1 0.8 0.6 | bcut +f -s 100 > data.cut

In this case, the file data.cut will contain 156 points.

If we generate a data.f file passing a sinusoidal signal through a 256-length window as
follows

sin -p 30 -l 2000 | window > data.f

and we want to take only the third window output, we could use the following com-
mand:

bcut +f -l 256 -s 3 -e 3 < data.f > data.cut

SEE ALSO

bcp, merge, reverse

14 BELL Speech Signal Processing Toolkit BELL

NAME

bell – ring a bell

SYNOPSIS

bell [num]

DESCRIPTION

bell rings a bell num times.

OPTIONS

num number of times bell rings [1]

EXAMPLE

This example rings bell 10 times:

bell 10

C2ACR Speech Signal Processing Toolkit C2ACR 15

NAME

c2acr – transform cepstrum to autocorrelation

SYNOPSIS

c2acr [–m M1] [–M M2] [–l L] [infile]

DESCRIPTION

c2acr calculates M2-th order autocorrelation coefficients from M1-th order cepstral co-
efficients in the infile (or standard input), writing the result to standard output. Given the
cepstral coefficients

c(0), c(1), . . . , c(M1)

the corresponding autocorrelation coefficients are given by

r(0), r(1), . . . , r(M2)

Both input and output files are in float format.

The power spectrum is calculated from the logarithm spectrum, which is obtained from
the Fourier transform of the M1-th order cepstral coefficients. The autocorrelation coef-
ficients are obtained through the inverse Fourier transform of the power spectrum.

OPTIONS

–m M1 order of cepstrum [25]
–M M2 order of autocorrelation [25]
–l L FFT length [256]

EXAMPLE

In the following example, the 15-th order linear prediction coefficients are calculated
from the 30-th order cepstral coefficients in data.cep and the result is sent to the data.lpc.

c2acr -m 30 -M 15 < data.cep | levdur -m 15 > data.lpc

SEE ALSO

uels, c2sp, c2ir, lpc2c

16 C2IR Speech Signal Processing Toolkit C2IR

NAME

c2ir – cepstrum to minimum phase impulse response

SYNOPSIS

c2ir [–l L] [–m M1] [–M M2] [–i] [infile]

DESCRIPTION

c2ir calculates the minimum phase impulse response from the minimum phase cepstral
coefficients in the infile (or standard input), sending the result to standard output. For
example, if the input sequence is

c(0), c(1), c(2), . . . , c(M1)

then the impulse response is calculated as

h(n) =

h(0) = exp(c(0))

h(n) =
M1∑
k=1

k
n

c(k)h(n − k) n ≥ 1

and the output will be given by

h(0), h(1), h(2), . . . , h(L − 1)

Both input and output files are in float format.

OPTIONS

–m M1 order of cepstrum [25]
–M M2 length of impulse response [L-1]
–l L order of impulse response [256]
–i input minimum phase sequence [FALSE]

If the number of cepstral coefficients M1 is not assigned and the order of the cepstral
analysis is less then L, then the number of coefficients read is made equal to M1.

EXAMPLE

The output file data.ir contains the impulse response in the range n = 0 ∼ 99 obtained
from the 30-th order cepstral coefficients file data.cep, in float format:

c2ir -l 100 -m 30 data.cep > data.ir

SEE ALSO

c2sp, c2acr

C2SP Speech Signal Processing Toolkit C2SP 17

NAME

c2sp – transform cepstrum to spectrum

SYNOPSIS

c2sp [–m M] [–l L] [–p] [–o O] [infile]

DESCRIPTION

c2sp calculates the spectrum from the minimum phase cepstrum from infile (or standard
input), sending the result to standard output. Input and output data are in float format.

OPTIONS

–m M order of cepstrum [25]
–l L frame length [256]
–p output phase [FALSE]
–o O output format

if the “–p” option is not assigned then

O = 0 20 × log |H(z)|
O = 1 ln |H(z)|
O = 2 |H(z)|

if the “–p” option is assigned then

O = 0 arg |H(z)| ÷ π [π rad.]
O = 1 arg |H(z)| [rad.]
O = 2 arg |H(z)| × 180 ÷ π [deg.]

[0]

EXAMPLE

The example below takes the 15-th order cepstrum from the file data.cep in float format,
evaluates the running spectrum, and presents it in the screen:

c2sp -m 15 data.cep | grlogsp | xgr

SEE ALSO

uels, mgc2sp

18 CDIST Speech Signal Processing Toolkit CDIST

NAME

cdist – calculation of cepstral distance

SYNOPSIS

cdist [–m M] [–o O] [–f] cfile [infile]

DESCRIPTION

cdist calculates the cepstral distance between the cepstral coefficients in infile (or stan-
dard input) and the ones in cfile, sending the result to standard output. For example, if
the cepstral coefficients of the infile at frame t are

c1,t(0), c1,t(1), c1,t(2), . . . , c1,t(M)

and the cepstral coefficients in cfile at frame t are

c2,t(0), c2,t(1), c2,t(2), . . . , c2,t(M)

then the squared cepstrum distance for every frame is given by

d(t) =
M∑

k=1

(c1,t(k) − c2,t(k))2

and the total cepstral distance between both files is

d =
1
T

T∑
t=0

d(t)

If the number of frames in the two files is different, then cdist will consider the smallest
number for the evaluation.

OPTIONS

–m M order of minimum-phase cepstrum [25]
–o O output format

O = 0 10
ln 10

√
2d(t) [db]

O = 1 d(t)
O = 2

√
d(t)

[0]

–f output frame by frame [FALSE]

EXAMPLE

In the example below, the squared spectral distance of the 15-th order cepstrum files
data1.cep and data2.cep, both in float formats, is evaluated and displayed:

cdist -m 15 data1.cep data2.cep | dmp +f

CDIST Speech Signal Processing Toolkit CDIST 19

SEE ALSO

acep, agcep, amcep, mcep

20 CLIP Speech Signal Processing Toolkit CLIP

NAME

clip – data clipping

SYNOPSIS

clip [–y ymin ymax] [–ymin ymin] [–ymax ymax] [infile]

DESCRIPTION

clip clips the data from infile (or standard input) between the minimum and maximum
values specified on the command line, sending the result to standard output.

Input and output data are in float format.

OPTIONS

–y ymin ymax lower bound & upper bound [−1.0 1.0]
–ymin ymin lower bound (ymax = inf) [N/A]
–ymax ymax upper bound (ymin = -inf) [N/A]

EXAMPLE

Suppose that the data in data.f is in float format and presents the following values,

1.0, 2.0, 3.0, 4.0, 5.0, 6.0

If we type the command

clip -y 2.5 5.5 < data.f > data.clip

then the output data.clip will contain the following values.

2.5, 2.5, 3.0, 4.0, 5.0, 5.5

DA Speech Signal Processing Toolkit DA 21

NAME

da – play 16-bit linear PCM data

SYNOPSIS

da [–s S] [–c C] [–g G] [–a A] [–o O] [–w] [–H H]

[–v] [+type] [infile1] [infile2] ...

DESCRIPTION

da plays a series of input files (or standard input) on a system-dependent audio output de-
vice. If the system does not support the specified sampling frequency, da up-samples the
data to a supported frequency. This command can be used under Linux (i386), FreeBSD
(i386 newpcm driver), SunOS 4.1.x, SunOS 5.x (SPARC).

It is possible to change the environment settings through the following options

DA GAIN gain
DA AMPGAIN amplitude gain
DA PORT output port
DA HDRSIZE header size
DA FLOAT set the input data to float

OPTIONS

–s S sampling frequency, it can be used the following sampling fre-
quencies 8, 10, 11.025, 12, 16, 20, 22.05, 32, 44.1, 48 (kHz).

[10]

–g G gain [0]
–a A amplitude gain(0..100) [N/A]
–o O output port(s : speaker, h : headphone) [s]
–w execute byte swap [FALSE]
–H H header size in byte [0]
–v display filename [FALSE]
+type input data format

c char (1 byte) C unsigned char (1 byte)
s short (2 bytes) S unsigned short (2 bytes)
i3 int (3 bytes) I3 unsigned int (3 bytes)
i int (4 bytes) I unsigned int (4 bytes)
l long (4 bytes) L unsigned long (4 bytes)
le long long (8 bytes) LE unsigned long long (8 bytes)
f float (4 bytes) d double (8 bytes)

[f]

EXAMPLE

In the following example, the speech data file data.s is played on the headphone. The
sampling frequency is 8 kHz, and the input data is in short format.

22 DA Speech Signal Processing Toolkit DA

da +s -s 8 -o h data.s

BUGS

In Linux operating systems, the output port can not be assigned.

DCT Speech Signal Processing Toolkit DCT 23

NAME

dct – DCT-II

SYNOPSIS

dct [–l L] [–I] [–d] [infile]

DESCRIPTION

dct calculates the Discrete Cosine Transform II (DCT-II) of the input data in the infile
(or standard input), sending the results to standard output. The input and output data are
both in float format, and arranged as follows.

Data block 1 Data block 2

Input

Data block 1 Data block 2

After DCT
 (Output)

size size size size

size size size size

Real part Real partIm. part Im. part

Real part Real partIm. part Im. part

The Discrete Cosine Transform II can be written as:

Xk =

√
2
L

ck

L−1∑
l=0

xl cos
{
π

L
k
(
l +

1
2

)}
, l = 0, 1, · · · , L

where

ck =

 1 (1 ≤ k ≤ L − 1)
1/
√

2 (k = 0)

OPTIONS

–l L DCT size [256]
–I use complex number [FALSE]
–d don’t use FFT algorithm [FALSE]

24 DCT Speech Signal Processing Toolkit DCT

EXAMPLE

In this example, the DCT is evaluated from a complex-valued data file data.f in float
format (real part: 256 points, imaginary part: 256 points), and the output is written to
data.dct:

dct data.f -l 256 -I > data.dct

SEE ALSO

fft, idct

DECIMATE Speech Signal Processing Toolkit DECIMATE 25

NAME

decimate – decimation (data skipping)

SYNOPSIS

decimate [–p P] [–s S] [infile]

DESCRIPTION

decimate picks up a sequence of input data from infile (or standard input) with interval
P and start number S , sending the result to standard output.

If the input data is
x(0), x(1), x(2), . . .

then the output data is given by:

x(S), x(S + P), x(S + 2P), x(S + 3P), . . .

Input and output data are in float format.

OPTIONS

–p P decimation period [10]
–s S start sample [0]

EXAMPLE

This example decimates input data from data.f file with interval 2, interpolates 0 with
interval 2, and then outputs the results to the file data.di:

decimate -p 2 < data.f | interpolate -p 2 > data.di

SEE ALSO

interpolate

26 DELAY Speech Signal Processing Toolkit DELAY

NAME

delay – delay sequence

SYNOPSIS

delay [–s S] [–f] [infile]

DESCRIPTION

delay delays the data in infile (or standard input) by inserting a specified number of zero
samples at the beginning, and sends the result to standard output. For example, if we
want to delay the following data

x(0), x(1), . . . , x(T)

as in
0, . . . , 0︸ ︷︷ ︸

S

, x(0), x(1), . . . , x(T).

We only need to set the “–s” option to S

0, . . . , 0︸ ︷︷ ︸
S

, x(0), x(1), . . . , x(T − S).

Both input and output files are in float format.

OPTIONS

–s S start sample [0]
–f keep file length [FALSE]

EXAMPLE

If we have the following data in the input data.f file

1.0, 2.0, 3.0, 4.0, 5.0, 6.0

and we use the command below

delay -s 3 < data.f > data.delay

then the output file data.delay will be

0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0

As another example, if we want to keep the same size of the input file, we can use the
following command,

delay -s 3 -f < data.f > data.delay

and the output data.delay will be

0.0, 0.0, 0.0, 1.0, 2.0, 3.0

DELTA Speech Signal Processing Toolkit DELTA 27

NAME

delta – delta calculation

SYNOPSIS

delta [–m M] [–l L] [–t T] [–d (f n | d0 [d1 . . .])] [–r NR W1 [W2]]

[–R NR WF1 WB1 [WF2 WB2]] [–M magic] [infile]

DESCRIPTION

delta calculates dynamic features from infile (or standard input), sending the result (static
and dynamic features) to the standard output. Input and output are of the form:

input . . . , xt(0), . . . , xt(M), . . .

output . . . , xt(0), . . . , xt(M),∆(1)xt(0), . . . ,∆(1)xt(M), . . . ,∆(n)xt(0), . . . ,∆(n)xt(M), . . .

Also, input and output data are in float format. The dynamic feature vector ∆(n)xt can be
obtained from the static feature vector as follows.

∆(n)xt =

L(n)∑
τ=−L(n)

w(n)(τ)xt+τ

where n is the order of the dynamic feature vector. For example, when we evaluate the
∆2 parameter, n = 2.

OPTIONS

–m M order of vector [25]
–l L length of vector [M + 1]

28 DELTA Speech Signal Processing Toolkit DELTA

–d (f n | d0 [d1 . . .]) f n is the file name of the parameters w(n)(τ)
used when evaluating the dynamic feature
vector. It is assumed that the number of co-
efficients to the left and to the right are the
same. In case this is not true, then zeros are
added to the shortest side. For example, if
the coefficients are given by:

w(−1),w(0),w(1),w(2),w(3)

then zeros must be added to the left as fol-
lows.

0, 0,w(−1),w(0),w(1),w(2),w(3)

Instead of entering the filename f n, the co-
efficients(which compose the file f n) can
be directly inputted from the command
line. When the order of the dynamic fea-
ture vector is higher than one, then the sets
of coefficients can be inputted one after the
other as shown in the example below. This
option cannot be used with the –r nor –R
options.

[N/A]

DELTA Speech Signal Processing Toolkit DELTA 29

–r NR W1 [W2] This option is used when NR-th order dy-
namic parameters are used and the weight-
ing coefficients w(n)(τ) are evaluated by re-
gression. NR can be made equal to 1 or
2. The variables W1 and W2 represent the
widths of the first and second order regres-
sion coefficients, respectively. The first or-
der regression coefficients for ∆xt at frame
t are evaluated as follows.

∆xt =

∑W1
τ=−W1

τct+τ∑W1
τ=−W1

τ2

For the second order regression coeffi-
cients, a2 =

∑W2
τ=−W2

τ4, a1 =
∑W2
τ=−W2

τ2,
a0 =

∑W2
τ=−W2

1 and

∆2xt =
2
∑W2
τ=−W2

(a0τ
2 − a1)xt+τ

a2a0 − a2
1

This option cannot be used with the –d nor
–R options.

[N/A]

–R NR WF1 WB1[WF2 WB2] Similarly to the –r option, by using this op-
tion, we can obtain NR-th order dynamic
feature parameters and the weighting coef-
ficients will be evaluated by regression. NR

can be made equal to 1 or 2. The variables
WFi and WBi represent the width of the i-
th order regression coefficients in the for-
ward and backward direction, respectively.
Combining this option with the –M option,
the regression coefficients can be evaluated
skipping the magic number from the input.
This option cannot be used with the –d nor
–r options.

[N/A]

–M magic The magic number magic can be skipped
from the input during the calculation of the
dynamic features. This option is valid only
when the –R option is also specified.

[N/A]

EXAMPLE

In the example below, the first and second order dynamic features are calculated from
15-dimensional coefficient vectors from data.static using windows whose width are 1.
The resultant static and dynamic features are sent to data.delta:

30 DELTA Speech Signal Processing Toolkit DELTA

delta -m 15 -r 2 1 1 data.static > data.delta

or

echo "-0.5 0 0.5" | x2x +af > delta

echo "1.0 -2.0 1.0" | x2x +af > accel

delta -m 15 -d delta -d accel data.static > data.delta

Another example is presented bellow, where the first and second order dynamic features
are calculated from the scalar sequence in data.f0, sending windows with 2 units width
and skipping the magic number -1.0E15.

delta -l 1 -R 2 2 2 2 2 -M -1.0E15 data.f0 > data.delta

SEE ALSO

mlpg

DF2 Speech Signal Processing Toolkit DF2 31

NAME

df2 – second order standard form digital filter

SYNOPSIS

df2 [–s S] [–p f1 b1] [–z f2 b2] [infile]

DESCRIPTION

df2 filters data from infile (or standard input) using a second order digital filter in standard
form, sending the result to standard output. The central frequency and frequency band
can be both assigned through the options, shown bellow. The filter transfer function is
given by:

H(z) =
1 − 2 exp(−πb2/ f0) cos(2π f2/ f0)z−1 + exp(−2πb2/ f0)z−2

1 − 2 exp(−πb1/ f0) cos(2π f1/ f0)z−1 + exp(−2πb1/ f0)z−2

Also, if this command is used in cascade, an arbitrary filter can be designed by using the
options –p and –z. Input and output data are in float format.

OPTIONS

–s S sampling frequency S [kHz] [10.0]
–p f1 b1 center frequency f1 [Hz] and band width b1 [Hz] of pole [N/A]
–z f2 b2 center frequency f2 [Hz] and band width b2 [Hz] of zero [N/A]

EXAMPLE

The command below gives the impulse response of a filter with a pole at 2000 Hz and a
frequency band of 200 Hz:

impulse | df2 -p 2000 200 | fdrw | xgr

0 1 2 3 4 5-20

0

20

40

frequency[KHz]

l
o
g

m
a
g
n
i
t
u
d
e

(
d
b
)

200Hz

32 DFS Speech Signal Processing Toolkit DFS

NAME

dfs – digital filter in standard form

SYNOPSIS

dfs [–a K a(1) . . . a(M)] [–b b(0) b(1) . . . b(N)] [–p pfile] [–z zfile]
[infile]

DESCRIPTION

dfs filters data from infile (or standard output) using a digital filter in standard form,
sending the result to standard output. The filter transfer function is given by:

H(z) = K

N∑
n=0

b(n)z−n

1 +
M∑

m=1

a(m)z−m

Both input and output files are in float format.

OPTIONS

–a K a(1) . . . a(M) denominator coefficients, where K is the gain of
the transfer function.

[N/A]

–b b(0) b(1) . . . b(N) numerator coefficients [N/A]
–p p f ile denominator coefficients file in float format as fol-

lows
K, a(1), . . . , a(M)

[NULL]

–z z f ile numerator coefficients file in float format as fol-
lows

b(0), b(1), . . . , b(N)

[NULL]

If the option –a and –p specified, then both K and the denominator are set to 1. On the
other hand, if the option –b and –z are not specified, then the numerator is set to 1.

EXAMPLE

In order to visualize the impulse response of the following transfer function

H(z) =
1 + 2z−1 + z−2

1 + 0.9z−1

the command below can be used

impulse | dfs -a 1 0.9 -b 1 2 1 | dmp +f

DFS Speech Signal Processing Toolkit DFS 33

For visualizing the frequency response plot of the digital filter, whose coefficients are
defined in float format by the files data.p, data.z, then the following command can be
used.

impulse | dfs -p data.p -z data.z | spec | fdrw | xgr

The files data.p and data.z can be obtained through the x2x command.

34 DMP Speech Signal Processing Toolkit DMP

NAME

dmp – binary file dump

SYNOPSIS

dmp [–n N] [–l L] [+type] [%form] [infile]

DESCRIPTION

dmp converts data from infile (or standard input) to a human readable form, (one sample
per line, with line numbers) and sends the result to standard output.

OPTIONS

–n N block order (0,...,n) [EOD]
–l L block length (1,...,l) [EOD]
+t input data format

c char (1 byte) C unsigned char (1 byte)
s short (2 bytes) S unsigned short (2 bytes)
i3 int (3 bytes) I3 unsigned int (3 bytes)
i int (4 bytes) I unsigned int (4 bytes)
l long (4 bytes) L unsigned long (4 bytes)
le long long (8 bytes) LE unsigned long long (8 bytes)
f float (4 bytes) d double (8 bytes)

[f]

%form print format (printf style)
’+’ option must be placed in front of ’%’ option, without
whitespace.

[N/A]

EXAMPLE

In this example, data is read from the input file data.f in float format, and the enumerated
data is shown on the screen:

dmp +f data.f

For example, if the data.f file has the following values in float format

1, 2, 3, 4, 5, 6, 7

then the following output will be displayed on the screen:

0 1

1 2

2 3

3 4

4 5

DMP Speech Signal Processing Toolkit DMP 35

5 6

6 7

In case one wants to assign a block length the following command can be used.

dmp +f -n 2 data.f

And the output will be given by:

0 1

1 2

2 3

0 4

1 5

2 6

0 7

Some other examples are provided bellow:

Print the unit impulse response of a digital filter on the screen:

impulse | dfs -a 1 0.9 | dmp +f

Print a sine wave using the %e option of printf:

sin -p 30 | dmp +f%e

Print the same sine wave represented by three decimal points:

sin -p 30 | dmp +f%.3e

SEE ALSO

x2x, fd

36 DTW Speech Signal Processing Toolkit DTW

NAME

dtw – dynamic time warping

SYNOPSIS

dtw [–m M] [–l L] [–t T] [–r R] [–n N] [–p P]

[–s S core f ile] [–v Vit f ile] reffile [infile]

DESCRIPTION

dtw carries out dynamic time warping between the test data vectors from infile (or stan-
dard input) and the reference data vectors from reffile, and sends the result to standard
output. The result is the concatenated sequence of the test and the reference data vectors
along with the Viterbi path. If –s option is specified, the score calculated by dynamic
time warping, that is, the distance between the test data and the reference data is output
and sent to Scorefile. If –v option is specified, the concatenated frame number sequence
along the Viterbi path is output and sent to Vitfile.

For example, suppose that the test and the reference data vectors are

test : x(0), x(1), . . . , x(Tx − 1), x(Tx),
reference : y(0), y(1), . . . , y(Ty − 1), y(Ty),

where Tx and Ty are the length of the test and reference data vectors, respectively,p and
the following Viterbi sequences

test : x(φx(0)), x(φx(1)), . . . , x(φx(Tx − 1)), x(φx(Tx)),
reference : y(φy(0)), y(φy(1)), . . . , y(φy(Ty − 1)), y(φy(Ty)),

are obtained, where φx(·) and φx(·) are the function which maps the frame number of
test/reference data into the corresponding Viterbi frame number, respectively. In addi-
tion, the relation φx(Tx) = φy(Ty) holds. Then, the following sequence

x(φx(0)), y(φy(0)), x(φx(1)), y(φy(1)), . . . , x(φx(Tx)), y(φy(Ty))

are sent to the standard output. If –v option is specified, the following sequence

φx(0), φy(0), φx(1), φy(1), . . . , φx(Tx), φy(Ty)

are sent to the Vitfile.

Both input and output files are in float format. However, the Vitfile which contains the
Viterbi frame number sequence is in int format.

DTW Speech Signal Processing Toolkit DTW 37

OPTIONS

–m M order of vector [0]
–l L dimention of vector [M+1]
–t T number of test vectors [N/A]
–r R number of reference vectors [N/A]
–n N type of norm used for calculation of local cost

N = 1 L1-norm
N = 2 L2-norm

[2]

–p P local path constraint
candidates of constraint are shown in figure 4.

[5]

–s S core f ile output score of the dynamic time warping to S core f ile. [FALSE]
–v Vit f ile output frame number sequence along the Viterbi path to

Vit f ile.
[FALSE]

EXAMPLE

In the example below, a dynamic time warping between the scalar sequence from data.test
and the sequence from data.ref is carried out and the concatenated sequence are written
to data.out.

dtw -l 1 data.ref < data.test > data.out

38 DTW Speech Signal Processing Toolkit DTW

P = 1 P = 2 P = 3

P = 4 P = 5 P = 6

P = 7

Figure 4: candidates of local path constraint

DS Speech Signal Processing Toolkit DS 39

NAME

ds – down-sampling

SYNOPSIS

ds [–s S] [infile]

DESCRIPTION

ds down-samples data from infile (or standard input), and sends the result to standard
output.

Both input and output files are in float format.

The following filter coefficients can be used.

S = 21 $SPTK/share/SPTK/lpfcoef.2to1
S = 32 $SPTK/share/SPTK/lpfcoef.3to2
S = 43 $SPTK/share/SPTK/lpfcoef.4to3
S = 52, s = 54 $SPTK/share/lpfcoef.5to2up

$SPTK/share/lpfcoef.5to2dn
($SPTK is the directory where toolkit was installed.)

Filter coefficients are in ASCII format.

OPTIONS

–s S conversion type

S = 21 down-sampling by 2 : 1
S = 32 down-sampling by 3 : 2
S = 43 down-sampling by 4 : 3
S = 52 down-sampling by 5 : 2
S = 54 down-sampling by 5 : 4

[21]

EXAMPLE

In this example, the speech data in the input file data.16, which was sampled at 16 kHz
in float format, is downsampled to 8 kHz:

ds data.16 > data.8

SEE ALSO

us, uscd, us16

40 ECHO2 Speech Signal Processing Toolkit ECHO2

NAME

echo2 – echo arguments to the standard error

SYNOPSIS

echo2 [–n] [argument]

DESCRIPTION

echo2 sends its command line arguments to standard error.

OPTIONS

–n no output newline [FALSE]

EXAMPLE

This example prints ”error!” in the standard error output:

echo2 -n "error!"

EXCITE Speech Signal Processing Toolkit EXCITE 41

NAME

excite – generate excitation

SYNOPSIS

excite [–p P] [–i I] [–n] [–s S] [infile]

DESCRIPTION

excite generates an excitation sequence from the pitch period information in infile (or
standard input), and sends the result to standard output. When the pitch period is nonzero
(i.e. voiced), the excitation sequence consists of a pulse train at that pitch. When the
pitch period is zero (i.e. unvoiced), the excitation sequence consists of Gaussian or M-
sequence noise.

Input and output data are in float format.

OPTIONS

–p P frame period [100]
–i I interpolation period [1]
–n gauss/M-sequence for unvoiced

default is M-sequence
[FALSE]

–s S seed for nrand for Gaussian noise [1]

EXAMPLE

In the example below, the excitation is generated from the data.p file and passed through
a LPC synthesis filter whose coefficients are in the data.lpc file. The speech signal is
outputted to the data.syn file.

excite < data.p | poledf data.lpc > data.syn

The following command can be used for generating an unvoiced sound by using Gaus-
sian noise:

excite -n < data.p | poledf data.lpc > data.syn

SEE ALSO

poledf

42 EXTRACT Speech Signal Processing Toolkit EXTRACT

NAME

extract – extract vector

SYNOPSIS

extract [–l L] [–i I] indexfile [infile]

DESCRIPTION

extract extracts selected vectors from infile (or standard input), and sends the result to
standard output. indexfile contains a previously-computed sequence of codebook in-
dexes corresponding to the input vectors. Only those input vectors whose codebook
index (from indexfile) matches the index given by the “–i” option are sent to the standard
output.

OPTIONS

–l L order of vector [10]
–i I codebook index [0]

EXAMPLE

In the example below, a 10-th order vector file data.v in float format is quantized us-
ing a previously obtained codebook data.idx and are written to the output file data.ex
quantized to the index 0 codeword.

extract -i 0 data.idx data.v > data.ex

SEE ALSO

ivq, vq

FD Speech Signal Processing Toolkit FD 43

NAME

fd – file dump

SYNOPSIS

fd [–a A] [–n N] [–m M] [–ent] [+type] [%form] [infile]

DESCRIPTION

fd converts data from infile (or standard input) to a human-readable multi-column format,
and sends the result to standard output.

OPTIONS

–a A address [0]
–n N initial value for numbering [0]
–m M modulo for numbering [EOF]
–ent number of data in each line [0]
+t data type

c char (1 byte) C unsigned char (1 byte)
s short (2 bytes) S unsigned short (2 bytes)
i3 int (3 bytes) I3 unsigned int (3 bytes)
i int (4 bytes) I unsigned int (4 bytes)
l long (4 bytes) L unsigned long (4 bytes)
le long long (8 bytes) LE unsigned long long (8 bytes)
f float (4 bytes) d double (8 bytes)

[c]

%form print format (printf style)
’+’ option must be placed in front of ’%’ option, without
whitespace.

[N/A]

EXAMPLE

This example displays the speech data in “sample.wav” with the corresponding ad-
dresses:

fd +c -a 0 sample.wav

Results:
000000 52 49 46 46 9a 15 00 00 57 41 56 45 66 6d 74 20 |RIFF....WAVEfmt |

000010 10 00 00 00 01 00 01 00 40 1f 00 00 40 1f 00 00 |........@...@...|

000020 01 00 08 00 64 61 74 61 76 15 00 00 8a 8a 8f 99 |....datav.......|

...

44 FD Speech Signal Processing Toolkit FD

SEE ALSO

dmp

FDRW Speech Signal Processing Toolkit FDRW 45

NAME

fdrw – draw a graph

SYNOPSIS

fdrw [–F F] [–R R] [–W W] [–H H] [–o xo yo] [–g G] [–m M]

[–l L] [–p P] [–j J] [–n N] [–t T] [–y ymin ymax] [–z Z] [–b]

[infile]

DESCRIPTION

fdrw converts float data from infile (or standard input) to a plot formatted according to
the FP5301 protocol, and sends the result to standard output. One can control the details
of the plot layout by setting the options bellow:

OPTIONS

–F F factor [1]
–R R rotation angle [0]
–W W width of figure (×100 mm) [1]
–H H height of figure (×100 mm) [1]
–o xo yo origin in mm [20 25]
–g G draw grid (0 ∼ 2) (see also fig) [1]
–m M line type (1 ∼ 5)

1: solid 2: dotted 3: dot and dash 4: broken 5: dash
[0]

–l L line pitch [0]
–p P pen number (1 ∼ 10) [1]
–j J join number (0 ∼ 2) [1]
–n N number of samples [0]
–t T rotation of coordinate axis. When T = −1, the refer-

ence point is on the top-left. When T = 1 the reference
point is on the bottom-right.

[0]

–y ymin ymax scaling factor for y axis [-1 1]
–z Z This option is used when data is written recursively in

the y axis. The distance between two graphs in the y
axis is given by Z.

[0]

–b bar graph mode [FALSE]

The x axis scaling is automatically done so that every point in the input file is plotted in
equally spaced interrals for the assigned width. When the –n option is omitted and the
number of input samples is below 5000, then the block size is made equal to the number
of samples. When the number of samples is above 5000, then the block size is made
equal to 5000.
When the –y option is omitted, the input data minimum value is set to ymin and the
maximum value is set to ymax.

46 FDRW Speech Signal Processing Toolkit FDRW

EXAMPLE

In the example below, the impulse response of a digital filter is drawn on the X window
environment:

impulse | dfs -a 1 0.8 0.5 | fdrw -H 0.3 | xgr

The graph width is 10cm and its height is 3cm.

The next example draws the magnitude of the frequency response of a digital filter on
the X window environment:

impulse | dfs -a 1 0.8 0.5 | spec | fdrw -y -60 40 | xgr

The y axis goes from −60 dB to 40 dB.

The running spectrum can be draw on the X window environment by:

fig -g 0 -W 0.4 << EOF

˜˜˜˜x 0 5

˜˜˜˜xscale 0 1 2 3 4 5

˜˜˜˜xname "FREQUENCY (kHz)"

EOF

spec < data |\

fdrw -W 0.4 -H 0.2 -g 0 -n 129 -y -30 30 -z 3 |\

xgr

The command psgr prints the output to a laser printer in the same manner as it is printed
on the screen. Since the fdrw command includes a sequence of commands for a plotter
machine (FP5301 protocol) in the output file, its output can be directly sent to a printer.

SEE ALSO

fig, xgr, psgr

FFT Speech Signal Processing Toolkit FFT 47

NAME

fft – FFT for complex sequence

SYNOPSIS

fft [–l L] [–m M] [–{ A | R | I | P }] [infile]

DESCRIPTION

fft uses the Fast Fourier Transform (FFT) algorithm to calculate the Discrete Fourier
Transform (DFT) of complex-valued input data from infile (or standard input), and sends
the result to standard output. The input and output data is in float format, and arranged
as follows.

Input sequence

M+1︷ ︸︸ ︷
real part

M+1︷ ︸︸ ︷
imaginary part

0 M 0 M

Output sequence

L︷ ︸︸ ︷
real part

L︷ ︸︸ ︷
imaginary part

0 L − 1 0 L − 1

OPTIONS

–l L FFT size power of 2 [256]
–m M order of sequence [L-1]
–A amplitude [FALSE]
–R real part [FALSE]
–I imaginary part [FALSE]
–P output power spectrum [FALSE]

EXAMPLE

This example reads a sequence of complex numbers in float format from data.f file (real
part with 256 points and imaginary part with 256 points), evaluates its DFT and outputs
it to the data.dft file:

fft data.f -l 256 -A > data.dft

SEE ALSO

fftr, spec, phase

48 FFT2 Speech Signal Processing Toolkit FFT2

NAME

fft2 – 2-dimensional FFT for complex sequence

SYNOPSIS

fft2 [–l L] [–m M1 M2] [–t] [–c] [–q] [–{ A | R | I | P }]

[infile]

DESCRIPTION

fft2 uses the 2-dimensional Fast Fourier Transform (FFT) algorithm to calculate the 2-
dimensional Discrete Fourier Transform (DFT) of complex-valued input data from infile
(or standard input), and sends the result to standard output. The input and output data is
in float format, arranged as follows.

Data block 1 Data block 2

Input

After FFT
 (Output)

size

Real part Real partIm. part Im. part

Real part Real partIm. part Im. part

×size size ×size size ×size size ×size

n1 ×n2 n1 ×n2 n1 ×n2 n1 ×n2

size size

000

000

000

000

000

000

000

000

00000000000000 00000000000000

n2

Real part Im. part

n1n1

size

After read

FFT2 Speech Signal Processing Toolkit FFT2 49

OPTIONS

–l L FFT size power of 2 [64]
–m M1 M2 order of sequence (M1 × M2). If file size k is smaller than

642×2 and
√

k ÷ 2 is an integer value, M1 = M2 =
√

k ÷ 2.
Otherwise, an output error message is sent to standard error
output and the command is terminated.

[64,M1]

–t Output results in transposed form.

FFT result transposed
output

X

Y

X

Y

[FALSE]

–c When results are transposed, 1 boundary data is copied
from the opposite side, and then (L + 1) × (L + 1) data
is outputted.

transposed
output

compensated
boundary

0 l-1

l-1

0
0 l

0

l

[FALSE]

–q Output first 1/4 data of FFT results only. As in the above c
option, boundary data is compensated and (L

2 + 1)× (L
2 + 1)

data is outputted.

FFT result
0 l-1

l-1

0

First quadrant
output

0 l/2+1

l/2+1

0
l/2

l/2

[FALSE]

–A amplitude [FALSE]

50 FFT2 Speech Signal Processing Toolkit FFT2

–R real part [FALSE]
–I imaginary part [FALSE]
–P output power spectrum [FALSE]

EXAMPLE

This example reads a sequence of 2-dimensional complex numbers in float format from
data.f file, evaluates its 2-dimensional DFT and outputs it to data.dft file:

fft2 -A data.f > data.dft

SEE ALSO

fft, fftr2, ifft

FFTCEP Speech Signal Processing Toolkit FFTCEP 51

NAME

fftcep – FFT cepstral analysis

SYNOPSIS

fftcep [–m M] [–l L] [–j J] [–k K] [–e E] [infile]

DESCRIPTION

fftcep uses FFT cepstral analysis to calculate the cepstrum from windowed framed input
data in infile (or standard input), sending the result to standard output. The windowed
input time domain sequence of length L is of the form:

x(0), x(1), . . . , x(L − 1)

Input and output data are in float format.

Also, the improved cepstral analysis method (1) may be used if the number of iterations
J and the acceleration factor K are given.

OPTIONS

–m M order of cepstrum [25]
–l L frame length [256]
–j J number of iteration [0]
–k K acceleration factor [0.0]
–e E epsilon [0.0]

EXAMPLE

In the example below, speech data in float format is read from data.f and the cepstral
coefficients are output to data.cep:

frame < data.f | window | fftcep > data.cep

SEE ALSO

uels

52 FFTR Speech Signal Processing Toolkit FFTR

NAME

fftr – FFT for real sequence

SYNOPSIS

fftr [–l L] [–m M] [–{ A | R | I | P }] [–H] [infile]

DESCRIPTION

fftr uses the Fast Fourier Transform (FFT) algorithm to calculate the Discrete Fourier
Transform (DFT) of real-valued input data in infile (or standard input), and sends the
result to standard output. When the –m option is omitted and the input data sequence
length is less than the FFT size, the input data is padded with zeros. The input and output
data is in float format, arranged as below.

Input sequence

L︷ ︸︸ ︷
x0, x1, . . . , xM, 0, . . . , 0

0 L − 1

Output sequence

L︷ ︸︸ ︷
real part

L︷ ︸︸ ︷
imaginary part

0 L − 1 0 L − 1

OPTIONS

–l L FFT size power of 2 [256]
–m M order of sequence [L-1]
–A output magnitude [FALSE]
–R output real part [FALSE]
–I output imaginary part [FALSE]
–P output power spectrum [FALSE]
–H output half size [FALSE]

EXAMPLE

In the example below, a sine wave is passed through a Blackman window, its DFT is
evaluated and the magnitude is plotted:

sin -p 30 | window | fftr -A | fdrw | xgr

SEE ALSO

fft, fft2, fftr2, ifft ifftr ifft2 spec, phase

FFTR2 Speech Signal Processing Toolkit FFTR2 53

NAME

fftr2 – 2-dimensional FFT for real sequence

SYNOPSIS

fftr2 [–l L] [–m M1 M2] [–t] [–c] [–q] [–{ A | R | I | P }] [infile]

DESCRIPTION

fftr2 uses the 2-dimensional Fast Fourier Transform (FFT) algorithm to calculate the
2-dimensional Discrete Fourier Transform (DFT) of real-valued input data in infile (or
standard input), and sends the result to standard output. The input and output data is in
float format, arranged as follows.

Input

After FFT
 (Output)

size

Real part Real partIm. part Im. part

×size size ×size size ×size size ×size

n1 ×n2 n1 ×n2 n1 ×n2

size size

000

000

000

000

000

000

000

000

00000000000000 00000000000000

n2

n1n1

size

After read

OPTIONS

–l L FFT size power of 2 [64]
–m M1 M2 order of sequence (M1 × M2). If the file size k is smaller

than 642 and
√

k is an integer value, then M1 = M2 =
√

k.
Otherwise, output error message is sent to standard error
output and then the command terminates.

[64,M1]

–t Output results in transposed form (see also fft2). [FALSE]
–c When results are transposed, 1 boundary data is copied

from the opposite side, and then data whose size is (L +
1) × (L + 1) is output. (see also fft2).

[FALSE]

54 FFTR2 Speech Signal Processing Toolkit FFTR2

–q Output first 1/4 data of FFT results only. As in –c option,
boundary data is compensated and data whose size is (L

2 +

1) × (L
2 + 1) is output (see also fft2).

[FALSE]

–A amplitude [FALSE]
–R real part [FALSE]
–I imaginary part [FALSE]
–P output power spectrum [FALSE]

EXAMPLE

This example reads a sequence of 2-dimensional real numbers in float format from data.f
file, evaluates its 2-dimensional DFT and outputs results to data.dft file:

fftr2 -A data.f > data.dft

SEE ALSO

fft, fft2, fftr, ifft ifft2 ifftr

FIG Speech Signal Processing Toolkit FIG 55

NAME

fig – plot a graph

SYNOPSIS

fig [–F F] [–R R] [–W W] [–H H] [–o xo yo] [–g G] [–p P] [–j J]

[–s S] [–f f ile] [–t] [infile]

DESCRIPTION

fig draws a graph using information from infile (or standard input), sending the result in
FP5301 plot format to standard output. This command is similar to the Unix command
“graph” but includes some labeling functions. The output can be printed directly on
a printer that supports the FP5301 protocol, displayed on an X11 display with the xgr
command, or converted to PostScript format with the psgr command.

OPTIONS

–F F factor [1]
–R R rotation angle [0]
–W W width of figure (×100mm) [1]
–H H height of figure (×100mm) [1]
–o xo yo origin in mm [20 20]
–g G draw grid (0 ∼ 2)

G 0 1 2

[2]

–p P pen number (1 ∼ 10) [1]
–j J join number (0 ∼ 2) [0]
–s S font size (1 ∼ 4) [1]
–f f ile The file assigned after this option is read before infile, that

is, this option gives preference.
[NULL]

–t transpose x and y axes [FALSE]

EXAMPLE

In the example below, data in data.fig file is plotted in an X terminal:
fig data.fig |xgr

In this example, data in data.fig file is converted to postscript format and visualized with
ghostview:

fig data.fig | psgr | ghostview -

USAGE

56 FIG Speech Signal Processing Toolkit FIG

COMMAND

The input data file can contain commands and data. Commands can be used for labeling,
scaling, etc. Data is written in the (x y) coordinate pair form. Command values can be
overwritten by entering new command values.

COMMAND LINES

x [mel α] xmin xmax [xa]
y [mel α] ymin ymax [ya]

Assigns x and y scalings. Marks can be specified in
x and y axes through xa and ya. If no setting of xa
and ya is done, then xa is set to xmin and ya to ymin.
If the optional “mel α”, where α must be a number
(for example, mel 0.35), is used, then labeling is un-
dertaken as a frequency transformation of a minimum
phase first order all-pass filter.

xscale x1 x2 x3 . . .
yscale y1 y2 y3 . . .

Assigns values to the points x1, x2, x3, . . . and
y1, y2, y3, . . . in x and y axes. These points can be as-
signed with numbers or marks, Also, when one wants
to specify points which consist of numeric and non-
numeric characters all together (like in ’2,*.3.14),
then the following function should be used:

s draws marks with half size.
\ only writes number.
@ does not write anything

but assigns positions of marks.
none of the above only marks are written.

Whenever the character is inside quotes, it appears in
the position assigned by the string that precedes it.
Please refer to the commands x/yname for informa-
tion on special characters.
(Example)
x 0 5
xscale 0 1.0 s1.5 ’2 \2.5 ’3.14 ”\pi” @4 ”x” 5

0 1.0 2.5 π x 5

xname ”text”
yname ”text”

Labels x and y axes. text should appear between
the quotes. Within text, TEXcommands can be used.
Also, characters, such as those that can be obtained
with TEX, can be written with this command.

print x y ”text” [th]
printc x y ”text” [th]

This command writes text in the position (x y) as-
signed. The option th sets the rotation degree.

t e x

(x y)

t e x

(x y)

print printc

p

FIG Speech Signal Processing Toolkit FIG 57

title x y ”text” [th]
titlec x y ”text” [th]

This command does the same as print(c). However,
the basic unit is expressed in the mm, evaluated as
absolute value. The reference point is on the bottom-
left side.

csize h [w] This command sets the character width and height (in
mm), to be used in the following commands:
x/yscale, x/yname, print/c, title/c
When the value of w is omitted, w is made equal to
h. The default values for the option –s are as follows:
–s w h
1 2.5 2.2
2 5 2.6
3 2.5 4.4
4 5 4.4

pen penno This command chooses the variable penno. 1 ≤
penno ≤ 10 Please refer to appendix.

join joinno This command chooses the variable joinno. 0 ≤
joinno ≤ 2 Please refer to the appendix.

line ltype [lpt] This command sets the type ltype of the line which
will connect data as well as the lpt pace. lpt is
in mm. When ltype=0: no line is used to connect
coordinate points. 1: solid 2: dotted 3: dot and
dash 4: broken 5: dash Please refer to the appendix.

xgrid x1 x2 . . .
ygrid y1 y2 . . .

This command causes grids to be drawn in the posi-
tions x1 x2 . . . , y1 y2
(Example)

0 1 2 3 4 5
0

2

4

6

x 0 5
y 0 6
xscale 0 1 2 3 4 5
yscale 0 2 4 6

xgrid 1 2 3 4
ygrid 2 4

mark label [th] This command draws a mark in the assigned co-
ordinate position. The option th specifies the an-
gle(degree) in which the string will be draw. If label
is assigned with \0, the mark is released. A detailed
explanation on writing marks and special characters
to graphs is provided at the label section.

58 FIG Speech Signal Processing Toolkit FIG

height h [w]
italic th

The height command defines the size of the label
through its height h(mm) and width w(mm). The la-
bels may also be written in italic by using the italic
command.

circle x y r1 r2 . . .
xcircle x y r1 r2 . . .
ycircle x y r1 r2 . . .

These commands write circles with radius r1 r2 . . .
and center on the coordinate (x, y). Also, the radius
rx is given in mm. As for the xcircle and ycircle
commands, the units considered for the radius are the
scales of the x axis and y axis, respectively, as shown
in the figure below.
(Example)

0 5
0

20 x 0 5
y 0 20
xscale 0 5
yscale 0 20

xcircle 3 10 1 2
ycircle 1 3 1 2
circle 1.5 15 13

box x0 y0 x1 y1 [x2 y2 . . .]
paint type

This command draws a rectangle with paint type
connecting (x0 y0) and (x1 y1) through a solid line.
The line which connects (x0 y0) and (x1 y1) forms
the diagonal of the rectangle. Also, if x2 y2 . . . are
assigned, a polygon is draw connecting the points (x0

y0),(x1 y1),(x2 y2),. . . . In this case, Please do not set
the paint type to any value different from the default.
The default value is 1.

(Example)

0 10
0

10 x 0 10
y 0 10
xscale 0 10
yscale 0 10

paint 18
box 2.5 0 3.5 6
paint -18
box 4 0 5 8
paint 1
box 2 2 8 8 8 2 4 7

FIG Speech Signal Processing Toolkit FIG 59

clip x0 y0 x1 y1 This command allows for drawing only inside the
box defined by (x0 y0), (x1 y1). When the coordinates
(x0 y0), (x1 y1) are omitted, then the clip command is
skipped.

(Example)

0 10
0

10

x 0 10
y 0 10
xscale 0 10
yscale 0 10

clip 2 3 9 7
paint 18
box 2.5 0 3.5 6
paint -18
box 4 0 5 8
paint 1
box 2 2 8 8 8 2 4 7

any comment This is used for writing comment lines. Whatever is
written after the symbol # is ignored by the fig com-
mand.

DATA LINES

x y [label [th]] The coordinates (x y) are scaled by the values spec-
ified in the command line. If a string is written to
label, then it will be written in the (x y) position.
There should be no empty characters (e.g., space) in
the beginning of the label setting. When label is given
in the mark command, the label replacement will take
place only for this coordinate. The option th assigns
the angle.
If \n, where 0 ≤ n ≤ 15, is assigned to label, the
corresponding mark is draw (refer to the appendix for
the types of marks). When a minus sign is written be-
fore mark number, then the connecting line between
marks passes through the center of each mark.
If a minus sign is not included, then connecting lines
do not pass through the center of each mark. When
n = 16(\16), a small circle is written with diameter
defined by the hight command. Also, special charac-
ter and ASCII character can be written through code
number when n > 32.

eod
EOD

This is the end of data sign. Coordinates before and
after the eod sign are not connected.

60 FIG Speech Signal Processing Toolkit FIG

APPENDIX

• The following type of marks can be defined through label:

0 1 2

×

3 4 5 6

◊

7

×

8

+

9

⊗

10

⊕

11 12 13 14

♦

15

∗

• The following types of pen and line can be defined:
[When output is obtained through the command psgr]

1

2

3

4

5

line-type

1,3,7 2,6,8,9,10 4 5

pen

ps: The types of output generated by the pen command depend on the printer (Please
try printing this page).

FIG Speech Signal Processing Toolkit FIG 61

[When output is obtained through the command xgr]
The following colors can be used.

pen type 1 2 3 4 5 6 7 8 9 10
color black blue red green pink orange emerald gray brown dark blue

• The following types of joins can be defined:

0

Miter join

1

Round join

2

Bevel join
join type

example

• paint type:

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9

-10 -11 -12 -13 -14 -15 -16 -17 -18 -19

ps: From 1 ∼ 3 only a frame is draw, and for −9 and −19 the center is white and no
frame is draw.

62 FRAME Speech Signal Processing Toolkit FRAME

NAME

frame – extract frame from data sequence

SYNOPSIS

frame [–l L] [–n] [–p P] [infile]

DESCRIPTION

frame converts a sequence of input data from infile (or standard input) to a series of
possibly-overlapping frames with period P and length L, and sends the result to standard
output. If the input data is x(0), x(1), . . . , x(T), then the output data will be given by :

0 , 0 , . . . , x(0) , . . . , x(L/2)
x(P − L/2) , x(P − L/2 + 1) , . . . , x(P) , . . . , x(P + L/2)

x(2P − L/2) , x(2P − L/2 + 1) , . . . , x(2P) , . . . , x(2P + L/2)
...

OPTIONS

–l L frame length [256]
–p P frame period [100]
–n This option is used when, instead of having x(0) as the center

point in the first frame, one want to make x(0) as the first point
of the first frame

[FALSE]

EXAMPLE

In the example below, data is read from data.f file, The frame period is of 80 and Black-
man window is used. Also, linear prediction analysis is applied. The output is written in
data.lpc file:

frame -p 80 < data.f | window | lpc > data.lpc

SEE ALSO

bcp, x2x, bcut, window

FREQT Speech Signal Processing Toolkit FREQT 63

NAME

freqt – frequency transformation

SYNOPSIS

freqt [–m M1] [–M M2] [–a A1] [–A A2] [infile]

DESCRIPTION

freqt converts a M1-th order minimum phase sequence from infile (or standard input) into
a frequency-transformed M2-th order sequence, sending the result to standard output.

Given the input sequence
cα1(0), cα1(1), . . . , cα1(M1)

the frequency transform is given by:

α = (α1 − α2)/(1 − α1α2)

c(i)
α2

(m) =

cα1(−i) + α c(i−1)

α2 (0) m = 0
(1 − α2) c(i−1)

α2 (0) + α c(i−1)
α2 (1) m = 1

c(i−1)
α2 (m − 1) + α

(
c(i−1)
α2 (m) − c(i)

α2(m − 1)
)

m = 2, . . . ,M2

i = −M1, . . . ,−1, 0 (1)

And the M2-th order frequency transformed output sequence is of the form:

c(0)
α2

(0), c(0)
α2

(1), . . . , c(0)
α2

(M2)

Input and output data are in float format.

OPTIONS

–m M1 order of minimum phase sequence [25]
–M M2 order of warped sequence [25]
–a A1 all-pass constant of input sequenceα1 [0]
–A A2 all-pass constant of output sequenceα2 [0.35]

EXAMPLE

In the following example, the linear prediction coefficients in float format are read from
data.lpc file, transformed in 30-th order LPC mel-cepstral coefficients, and written in
data.lpcmc file:

lpc2c < data.lpc | freqt -m 30 > data.lpcmc

SEE ALSO

mgc2mgc

64 GC2GC Speech Signal Processing Toolkit GC2GC

NAME

gc2gc – generalized cepstral transformation

SYNOPSIS

gc2gc [–m M1] [–g G1] [–c C1] [–n] [–u]
[–M M2] [–G G2] [–C C2] [–N] [–U] [infile]

DESCRIPTION

gc2gc uses a regressive equation to transform a sequence of generalized cepstral coeffi-
cients with power parameter γ1 from infile (or standard input) into generalized cepstral
coefficients with power parameter γ2, sending the result to standard output.

Input and output data are in float format.

The regressive equation for the generalized cepstral coefficients is as follows.

cγ2(m) = cγ1(m) +
m−1∑
k=1

k
m

(γ2cγ1(k)cγ2(m − k) − γ1cγ2(k)cγ1(m − k)), m > 0.

For the above equation, in case γ1 = −1, γ2 = 0, then LPC cepstral coefficients are
obtained from the LPC coefficients, in case γ1 = 0, γ2 = 1, a minimum phase impulse
response is obtained from the cepstral coefficients.

If the coefficients cγ(m) have not been normalized, then the input and output will be
represented by

1 + γcγ(0), γcγ(1), . . . , γcγ(M)

The following applies to the case the coefficients are normalized,

Kα, γc′γ(1), . . . , γc′γ(M)

OPTIONS

–m M1 order of generalized cepstrum (input) [25]
–g G1 gamma of generalized cepstrum (input)

γ1 = G1

[0]

–c C1 gamma of generalized cepstrum (input)
γ1 = −1/(int)C1

C1 must be C1 ≥ 1
–n regard input as normalized cepstrum [FALSE]
–u regard input as multiplied by γ1 [FALSE]
–M M2 order of generalized cepstrum (output) [25]
–G G2 gamma of generalized cepstrum (output)

γ2 = G2

[1]

–C C2 gamma of mel-generalized cepstrum (output)
γ2 = −1/(int)G2

C2 must be C2 ≥ 1

GC2GC Speech Signal Processing Toolkit GC2GC 65

–N regard output as normalized cepstrum [FALSE]
–U regard output as multiplied by γ1 [FALSE]

EXAMPLE

In the following example, generalized cepstral coefficients with M = 10 and γ1 = −0.5
are read in float format from data.gcep file, transformed into 30-th order cepstral coeffi-
cients, and written to data.cep:

gc2gc -m 10 -c 2 -M 30 -G 0 < data.gcep > data.cep

SEE ALSO

gcep, mgcep, freqt, mgc2mgc, lpc2c

66 GCEP Speech Signal Processing Toolkit GCEP

NAME

gcep – generalized cepstral analysis(6; 7; 8)

SYNOPSIS

gcep [–m M] [–g G] [–c C] [–l L] [–q Q] [–n] [–i I] [–j J] [–d D]
[–e e] [–E E] [–f F] [infile]

DESCRIPTION

gcep uses generalized cepstral analysis to calculate normalized cepstral coefficients c′γ(m)
from L-length framed windowed input data from infile (or standard input), sending the
result to standard output. The windowed input sequence of length L is of the form:

x(0), x(1), . . . , x(L − 1)

Input and output data are in float format.

In the generalized cepstral analysis, the speech spectrum is estimated by the M-th order
generalized cepstrum cγ(m) or by normalized generalized cepstrum c′γ(m) using the log
spectrum through the unbiased estimation method showed below.

H(z) = s−1
γ

 M∑
m=0

cγ(m)z−m

= K · s−1

γ

 M∑
m=1

c′γ(m)z−m

=

K ·

1 + γ M∑
m=1

c′γ(m)z−m

1/γ

, −1 ≤ γ < 0

K · exp
M∑

m=1

c′γ(m)z−m, γ = 0

In order to find the minimum value of the cost function, the linear prediction method is
used for γ = −1. Otherwise, the Newton–Raphson method is applied.

OPTIONS

–m M order of generalized cepstrum [25]
–g G gamma of generalized cepstrum

γ = G
[0]

–c C gamma of generalized cepstrum
γ = −1/(int)C
C must be C ≥ 1

–l L frame length [256]
–n output normalized cepstrum [FALSE]

GCEP Speech Signal Processing Toolkit GCEP 67

–q Q input data style

Q = 0 windowed data sequence
Q = 1 20 × log | f (w)|
Q = 2 ln | f (w)|
Q = 3 | f (w)|
Q = 4 | f (w)|2

[0]

Usually, the options below do not need to be assigned.
–i I minimum iteration [2]
–j J maximum iteration [30]
–d D Newton-Raphson method end condition. The default value is

D = 0.001. In this case, the end point is achieved when the
evaluation rate of ε(i) is 0.001, that is, when its value changes
in a rate smaller than 0.1%.

[0.001]

–e e small value added to periodgram [0]
–E E floor in db calculated per frame [N/A]
–f F mimimum value of the determinant of the normal matrix [0.000001]

EXAMPLE

In the following example, speech data is read in float format from data.f file, and a 15-th
order generalized cepstral analysis is applied. The results are written to data.gcep:

frame < data.f | window | gcep -m 15 > data.gcep

SEE ALSO

uels, mcep, mgcep, glsadf

68 GLOGSP Speech Signal Processing Toolkit GLOGSP

NAME

glogsp – draw a log spectrum graph

SYNOPSIS

glogsp [–F F] [–O O] [–x X] [–y ymin ymax] [–ys YS] [–p P] [–ln LN]

[–s S] [–l L] [–c comment] [infile]

DESCRIPTION

glogsp converts float-format log spectral data from infile (or standard input) to FP5301
plot format, sending the result to standard output. The output can be visualized with xgr.

glogsp is implemented as a shell script that uses the fig and fdrw commands.

OPTIONS

–F F factor [1]
–O O origin of graph

1 (40,205) [mm]
2 (125,205) [mm]
3 (40,120) [mm]
4 (125,120) [mm]
5 (40, 35) [mm]
6 (125, 35) [mm]

1 2

3 4

5 6

[1]

–x X x scale
1 normalized frequency (0 ∼ 0.5)
2 normalized frequency (0 ∼ π)
4 frequency (0 ∼ 4 kHz)
5 frequency (0 ∼ 5 kHz)
8 frequency (0 ∼ 8 kHz)

10 frequency (0 ∼ 10 kHz)

[1]

–y ymin ymax y scale[dB] [0 100]
–ys YS Y-axis scaling factor [20]
–p P pen number(1 ∼ 10) [1]
–ln LN kind of line style(0 ∼ 5) (see also fig) [1]
–s S start frame number [0]
–l L frame length [256]

GLOGSP Speech Signal Processing Toolkit GLOGSP 69

–c comment comment for the graph [N/A]

Usually, the options below do not need to be assigned.
–W W width of the graph (mm) [0.6]
–H H height of the graph (mm) [0.6]
–v over write mode [FALSE]
–o xo yo origin of the graph. if -o option exists, -O is not

effective
[40 205]

–g G type of frame of the graph (0 ∼ 2) (see also fig) [2]
–f f ile additional data file for fig [NULL]
–help print help in detail

EXAMPLE

In the example below, speech data sampled at 10 kHz is read in short format from data.s
file, the magnitude of its log spectrum is evaluated and plotted on the screen:

x2x +sf data.s | bcut +f -s 4000 -e 4255 | window -n 2| spec |\

glogsp -x 5 | xgr

0 1 2 3 4 5
Frequency (kHz)

0

20

40

60

80

100

L
o
g

m
a
g
n
i
t
u
d
e

(
d
B
)

SEE ALSO

fig, fdrw, xgr, psgr, grlogsp, gwave

70 GLSADF Speech Signal Processing Toolkit GLSADF

NAME

glsadf – GLSA digital filter for speech synthesis(18)

SYNOPSIS

glsadf [–m M] [–c C] [–p P] [–i I] [–v] [–t] [–n] [–k] [–P Pa] gcfile

[infile]

DESCRIPTION

glsadf derives a Generalized Log Spectral Approximation digital filter from normalized
generalized cepstral coefficients in gcfile and uses it to filter an excitation sequence from
infile (or standard input) to synthesize speech data, sending the result to standard output.
The cepstral coefficients can be be represented as K, c′γ(1), . . . , c′γ(M).

Input and output data are in float format.

The transfer function H(z) are synthesis filter based on an M order normalized general-
ized cepstral coefficients c′γ(m) is

H(z) = K · D(z)

=

K ·

1 + γ M∑
m=1

c′γ(m)z−m

1/γ

, 0 < γ ≤ −1

K · exp
M∑

m=1

c′γ(m)z−m, γ = 0

In this case, we are considering only values for the power parameter γ = −1/C, where C
is a natural number. The filter D(z) can be realized through a C level cascade as shown
in figure1, where

1
C(z)

=
1

1 + γ
M∑

m=1

c′γ(m)z−m

1
C(z)

1
C(z)

1
C(z)

- -· · ·Input Output

level 1 level 2 level C

Figure 1: Structure of filter D(z)

GLSADF Speech Signal Processing Toolkit GLSADF 71

OPTIONS

–m M order of generalized cepstrum [25]
–c C power parameter γ = −1/C for generalized cepstrum

if C == 0 then the LMA filter is used
[1]

–p P frame period [100]
–i I interpolation period [1]
–n regard input as normalized generalized cepstrum [FALSE]
–v inverse filter [FALSE]
–t transpose filter [FALSE]
–k filtering without gain [FALSE]

The option below only works if C == 0.
–P Pa order of the Padé approximation

Pa should be 4 or 5
[4]

EXAMPLE

In this example, excitation is generated through the pitch data in the file data.pitch in
float format, passed through a GLSA filter based on the generalized cepstral coefficients
file data.gcep, and the synthesized speech is output to data.syn:

excite < data.pitch | glsadf data.gcep > data.syn

SEE ALSO

ltcdf, lmadf, lspdf, mlsadf, mglsadf

72 GMM Speech Signal Processing Toolkit GMM

NAME

gmm – GMM parameter estimation

SYNOPSIS

gmm [–l L] [–m M] [–t T] [–s S] [–a A] [–b B] [–e E] [–v V] [–w W] [–f]
[–F gmm f ile] [infile]

DESCRIPTION

gmm uses the expectation maximization (EM) algorithm to estimate Gaussian mixture
model (GMM) parameters with diagonal covariance matrices, from a sequence of vectors
in the infile (or standard input), sending the result to standard output.

The input sequence X consists of T float vectors x, each of size L:

X = [x(0), x(1), . . . , x(T − 1)] ,
x(t) = [xt(0), xt(1), . . . , xt(L − 1)] .

The result is GMM parameters λ consisting of M mixture weights w and M Gaussians
with mean vector µ and variance vector v, each of length L:

λ = [w, µ(0), v(0),µ(1), v(1), . . . ,µ(M − 1), v(M − 1)
]
,

w = [w(0),w(1), . . . ,w(M − 1)] ,
µ(m) =

[
µm(0), µm(1), . . . , µm(L − 1)

]
,

v(m) =
[
σ2

m(0), σ2
m(1), . . . , σ2

m(L − 1)
]
,

where
M−1∑
m=0

w(m) = 1.

The GMM parameter set λ is initialized by an LBG algorithm and the following EM
steps are used iteratively to obtain the new parameter set λ̂:

ŵ(m) =
1
T

T−1∑
t=0

p(m | x(t), λ),

µ̂(m) =
∑T−1

t=0 p(m | x(t), λ)x(t)∑T−1
t=0 p(m | x(t), λ)

,

σ̂2
m(l) =

∑T−1
t=0 p(m | x(t), λ)x2

t (l)∑T−1
t=0 p(m | x(t), λ)

− µ̂2
m(l),

where p(m | x(t), λ) is the posterior probability of being in the m-th component at time t
and is given by:

p(m | x(t), λ) =
w(m)N(x(t) | µ(m), v(m))∑M−1
k=0 w(k)N(x(t) | µ(k), v(k))

,

GMM Speech Signal Processing Toolkit GMM 73

where

N(x(t) | µ(m), v(m)) =
1

(2π)L/2 |Σ(m)|1/2 exp
{
−1

2
(x(t) − µ(m))′ Σ(m)−1 (x(t) − µ(m))

}
=

1
(2π)L/2 ∏L−1

l=0 σm(l)
exp

−1
2

L−1∑
l=0

(xt(l) − µm(l))2

σ2
m(l)

,
and Σ(m) is a diagonal matrix with diagonal elements v(m):

Σ(m) =

σ2

m(0) 0
σ2

m(1)
. . .

0 σ2
m(L − 1)

 .
Also, the Average log-likelihood for training data X

log P(X) =
1
T

T−1∑
t=0

log
M−1∑
m=0

w(m)N(x(t) | µ(m), v(m))

is increased by iterating the above steps. The average log-probability log P(X) at each
iterative step is printed on the standard error output. The EM steps are iterated at least
A times and stopped at the B-th iteration or when there is a small absolute change in
log P(X) (≤ E).

OPTIONS

–l L length of vector [26]
–m M number of Gaussian components [16]
–t T number of training vectors [N/A]
–s S seed of random variable for LBG algorithm [1]
–a A minimum number of EM iterations [0]
–b B maximum number of EM iterations (A≤ B) [20]
–e E end condition for EM iteration [0.00001]
–v V flooring value for variances [0.001]
–w W flooring value for weights (1/M)*W [0.001]
–f full covariance [FALSE]
–F f n GMM initial parameter file [N/A]

EXAMPLE

In the following example, a GMM with 8 Gaussian components is generated from train-
ing vectors data.f in float format, and GMM parameters are written to gmm.f.

gmm -m 8 data.f > gmm.f

If one wants to model GMMs with full covariances, one can use the -f option.

74 GMM Speech Signal Processing Toolkit GMM

gmm -m 8 -f data.f > gmm.f

The -F option can be used to specify GMM initial parameter file gmm.init.

gmm -m 8 -f data.f -F gmm.init > gmm.f

SEE ALSO

gmmp, lbg

GMMP Speech Signal Processing Toolkit GMMP 75

NAME

gmmp – calculation of GMM log-probability

SYNOPSIS

gmmp [–l L] [–m M] [–a] gmmfile [infile]

DESCRIPTION

gmmp calculates GMM log-probabilities of input vectors from infile (or standard input).
The gmmfile has the same file format as the one generated by the gmm command, i.e.,
gmmfile consists of M mixture weights w and M Gaussians with mean vector µ and
diagonal variance vector v, each of length L:

λ = [w, µ(0), v(0),µ(1), v(1), . . . ,µ(M − 1), v(M − 1)
]
,

w = [w(0),w(1), . . . ,w(M − 1)] ,
µ(m) =

[
µm(0), µm(1), . . . , µm(L − 1)

]
,

v(m) =
[
σ2

m(0), σ2
m(1), . . . , σ2

m(L − 1)
]
.

The input sequence consists of T float vectors x, each of size L:

x(0), x(1), . . . , x(T − 1).

The result is a sequence of log-probabilities of input vectors:

log b(x(0)), log b(x(1)), . . . , log b(x(T − 1)),

or an average log-probability (if -a option is used):

log P(X) =
1
T

T−1∑
t=0

log b(x(t)),

where

b(x(t)) =
M−1∑
m=0

w(m)N(x(t) ; µ(m), v(m)),

N(x(t) ; µ(m), v(m)) =
1

(2π)L/2 ∏L−1
l=0 σm(l)

exp

−1
2

L−1∑
l=0

(xt(l) − µm(l))2

σ2
m(l)

.
OPTIONS

–l L length of vector [26]
–m M number of Gaussian components [16]
–a print average log-probability [FALSE]

76 GMMP Speech Signal Processing Toolkit GMMP

EXAMPLE

In the following example, frame log-probabilities of input data data.f for GMM with 8
Gaussians gmm.f are written to probs.f.

gmmp -m 8 gmm.f data.f > probs.f

SEE ALSO

gmm

GNORM Speech Signal Processing Toolkit GNORM 77

NAME

gnorm – gain normalization

SYNOPSIS

gnorm [–m M] [–g G] [–c C] [infile]

DESCRIPTION

gnorm normalizes generalized cepstral coefficients cγ(m) from infile (or standard input),
sending the normalized generalized cepstral coefficients to standard output.

Both input and output files are in float format.

The normalized generalized cepstral coefficients c′γ(m) can be written as

c′γ(m) =
cγ(m)

1 + γcγ(0)
, m > 0

Also, the gain K = c′γ(0) is given by:

K =

(

1
1 + γcγ(0)

)1/γ

, 0 < |γ| ≤ 1

exp cγ(0), γ = 0

OPTIONS

–m M order of generalized cepstrum [25]
–g G power parameter γ of generalized cepstrum,

γ = G
[0]

–c C power parameter γ of generalized cepstrum,
γ = −1/(int)C
C must be C ≥ 1

EXAMPLE

In this example, generalized cepstral coefficients in float format are read from file data.gcep
(M = 15, γ = −0.5), normalized and output to data.ngcep:

gnorm -m 15 -c 2 < data.gcep > data.ngcep

SEE ALSO

ignorm, gcep, mgcep, gc2gc, mgc2mgc, freqt

78 GRLOGSP Speech Signal Processing Toolkit GRLOGSP

NAME

grlogsp – draw a running log spectrum graph

SYNOPSIS

grlogsp [–t] [–F F] [–O O] [–x X] [–y ymin] [–yy YY] [–yo YO] [–p P]

[–ln LN] [–s S] [–e E] [–n N] [–l L]

[–c comment1] [–c2 comment2] [–c3 comment3] [infile]

DESCRIPTION

grlogsp converts a sequence of float-format log spectra from infile (or standard input)
to a running spectrum plot in FP5301 plot format, sending the result to standard output.
The output can be visualized with xgr.

grlogsp is implemented as a shell script that uses the fig and fdrw commands.

OPTIONS

–t transpose x and y axes [FALSE]
–F F factor [1]
–O O origin of graph

if O is more than 6, drawing area is over A4
range

1 (25,YO) [mm]
2 (60,YO) [mm]
3 (95,YO) [mm]
4 (130,YO) [mm]
5 (165,YO) [mm]
6 (200,YO) [mm]
7 (235,YO) [mm]
8 (270,YO) [mm]
9 (305,YO) [mm]

10 (340,YO) [mm]

1 2 3 4 5 6 7 8 9 10

(YO + 100, X) [mm] if -t is specified.

[1]

GRLOGSP Speech Signal Processing Toolkit GRLOGSP 79

–x X x scale
1 normalized frequency (0 ∼ 0.5)
2 normalized frequency (0 ∼ π)
4 frequency (0 ∼ 4 kHz)
5 frequency (0 ∼ 5 kHz)
8 frequency (0 ∼ 8 kHz)

10 frequency (0 ∼ 10 kHz)

[1]

–y ymin y minimum [-100]
–yy YY y scale [dB/10mm] [100]
–yo YO y offset [30]
–p p type of pen (1 ∼ 10) [2]
–ln LN style of line (0 ∼ 5) (see also fig) [1]
–s S start frame number [0]
–e E end frame number [EOF]
–n N number of frame [EOF]
–l L frame length. Actually L

2 data are plotted. [256]
–c, c2, c3 comment1 ∼ 3 comment for the graph [N/A]

Usually, the options below do not need to be assigned.
–W W width of the graph (×100 mm) [0.25]
–H H height of the graph (×100 mm) [1.5]
–z Z This option is used when data is written re-

cursively in the y axis. the distance between
two graphs in the y axis are given by Z.
If Z is not given, Z is as same as F

–o xo yo origin of the graph. if -o option exists, -O is
not effective.

[95 30]

–g G type of frame of the graph (0 ∼ 2) (see also
fig)

[2]

–cy cy first comment position [-8]
–cy2 cy2 second comment position [-14]
–cy3 cy3 third comment position [-20]
–cs cs font size of the comments [1]
–f f additional data file for fig [NULL]

EXAMPLE

In this example, the magnitude of log spectrum is evaluated from data in data.f file in
float format, and the graph with the running spectrum is sent in Postscript format to
data.ps file:

frame < data.f | window |\

uels -m 15 | c2sp -m 15 |\

grlogsp | psgr > data.ps

SEE ALSO

80 GRLOGSP Speech Signal Processing Toolkit GRLOGSP

fig, fdrw, xgr, psgr, glogsp, gwave

GRPDELAY Speech Signal Processing Toolkit GRPDELAY 81

NAME

grpdelay – group delay of digital filter

SYNOPSIS

grpdelay [–l L] [–m M] [–a] [infile]

DESCRIPTION

grpdelay computes the group delay of a sequence of filter coefficients from infile (or
standard input), sending the result to standard output. Input and output data are in float
format.

If the –m option is omitted and the length of an input data sequence is less than FFT size,
the input file is padded with 0’s and the FFT is evaluated as exemplified below. When
the –a option is given, the gain is obtained from zero order input.

Input sequence

L︷ ︸︸ ︷
x0, x1, . . . , xM, 0, . . . , 0 filter coefficients

0 L − 1

Output sequence

L/2+1︷ ︸︸ ︷
τ(ω) group delay

0 L − 1

OPTIONS

–l L FFT size power of 2 [256]
–m M order of filter [L-1]
–a ARMA filter [FALSE]

EXAMPLE

This example plots in the screen the group delay of impulse response of the filter with
the following transfer function.

H(z) =
1

1 + 0.9z−1

impulse | dfs -a 1 0.9 | grpdelay | fdrw | xgr

SEE ALSO

delay, phase

82 GSERIES Speech Signal Processing Toolkit GSERIES

NAME

gseries – draw a discrete series

SYNOPSIS

gseries [–F F] [–s S] [–e E] [–n N] [–i I] [–y ymax] [–y2 ymin] [–m M]

[–p P] [–magic magic] [–MAGIC MAGIC] [+type] [infile]

DESCRIPTION

gseries converts discrete series data from infile (or standard input) to FP5301 plot format,
sending the result to standard output. The output can viewed with xgr.

gseries is implemented as a shell script that uses the fig command.

OPTIONS

–F F factor [1]
–s S start point [0]
–e E end point [EOF]
–n N data number of one screen

if this option is omitted, all of the data is plotted
on one screen.

[N/A]

–i I number of screen [5]
–y ymax maximum amplitude

if this option is omitted, ymax is maximum value
of the input data.

[N/A]

–y2 ymin minimum amplitude [-YMAX]
–m M mark type [1]
–p P pen type(1 ∼ 10) [1]
–magic magic remove magic number [FALSE]
–MAGIC MAGIC replace magic number by MAGIC

if -magic option is not given, return error.
if -magic or -MAGIC option is given multiple
times, also return error.

[FALSE]

+t Input data format

c char (1 byte) C unsigned char (1 byte)
s short (2 bytes) S unsigned short (2 bytes)
i3 int (3 bytes) I3 unsigned int (3 bytes)
i int (4 bytes) I unsigned int (4 bytes)
l long (4 bytes) L unsigned long (4 bytes)
le long long (8 bytes) LE unsigned long long (8 bytes)
f float (4 bytes) d double (8 bytes)
de long double (12 bytes)

[f]

GSERIES Speech Signal Processing Toolkit GSERIES 83

EXAMPLE

In the following example, gseries reads impulse response in float format from data.f and
writes the output in encapsulated Postscript format to data.eps.

gseries +f < data.f | psgr > data.eps

SEE ALSO

fig, fdrw, xgr, psgr, glogsp, grlogsp, gwave

84 GWAVE Speech Signal Processing Toolkit GWAVE

NAME

gwave – draw a waveform

SYNOPSIS

gwave [–F F] [–s S] [–e E] [–n N] [–i I] [–y ymax] [–y2 ymin] [–p P]

[+type] [infile]

DESCRIPTION

gwave converts speech waveform data from infile (or standard input) to FP5301 plot
format, sending the result to standard output. The output can viewed with xgr.

gwave is implemented as a shell script that uses the fig and fdrw commands.

OPTIONS

–F F factor [1]
–s S start point [0]
–e E end point [EOF]
–n N data number of one screen

if this option is omitted, all of the data is plotted on one
screen.

[N/A]

–i I number of screen [5]
–y ymax maximum amplitude

if this option is omitted, ymax is maximum value of the
input data.

[N/A]

–y2 ymin minimum amplitude [-YMAX]
–p P pen type(1 ∼ 10) [1]
+t Input data format

c char (1 byte) C unsigned char (1 byte)
s short (2 bytes) S unsigned short (2 bytes)
i3 int (3 bytes) I3 unsigned int (3 bytes)
i int (4 bytes) I unsigned int (4 bytes)
l long (4 bytes) L unsigned long (4 bytes)
le long long (8 bytes) LE unsigned long long (8 bytes)
f float (4 bytes) d double (8 bytes)
de long double (12 bytes)

[f]

EXAMPLE

This example reads speech waveform file in float format from data.f and writes the output
in Postscript format to data.ps.

gwave +f < data.f | psgr > data.ps

GWAVE Speech Signal Processing Toolkit GWAVE 85

SEE ALSO

fig, fdrw, xgr, psgr, glogsp, grlogsp

86 HISTOGRAM Speech Signal Processing Toolkit HISTOGRAM

NAME

histogram – histogram

SYNOPSIS

histogram [–l L] [–i I] [–j J] [–s S] [–n] [infile]

DESCRIPTION

histogram makes histograms of frames of input data from infile (or standard input), send-
ing the results to standard output.

Input and output data are in float format. The output can be graphed with fdrw.

If an input value is outside the specified interval, the exit status of histogram will be
nonzero, but the output histogram will still be created.

OPTIONS

–l L frame size

L > 0 evaluate the histogram for every frame
L = 0 evaluate the histogram for the whole file

[0]

–i I infimum [0.0]
–j J supremum [1.0]
–s S step size [0.1]
–n normalization [FALSE]

EXAMPLE

The example below plots the histogram of the speech waveform file data.f in float for-
mat.

histogram -i -16000 -j 16000 -s 100 data.f | fdrw | xgr

SEE ALSO

average

IDCT Speech Signal Processing Toolkit IDCT 87

NAME

idct – Inverse DCT-II

SYNOPSIS

idct [–l L] [–c] [–d] [infile]

DESCRIPTION

idct calculates the Inverse Discrete Cosine Transform II (IDCT-II) of input data in infile
(or standard input), sending the results to standard output. The input and output data is
in float format, arranged as follows.

Data block 1 Data block 2

Input

Data block 1 Data block 2

After IDCT
 (Output)

size size size size

size size size size

Real part Real partIm. part Im. part

Real part Real partIm. part Im. part

The Inverse Discrete Cosine Transformation II is given by

xl =

√
2
L

cl

L−1∑
k=0

Xk cos
{
π

L

(
k +

1
2

)
l
}
, l = 0, 1, · · · , L

where

cl =

 1 (1 ≤ l ≤ L − 1)
1/
√

2 (l = 0)

OPTIONS

–l L IDCT size [256]
–c use complex number [FALSE]
–d don’t use FFT algorithm [FALSE]

88 IDCT Speech Signal Processing Toolkit IDCT

EXAMPLE

In this example, the IDCT is evaluated from a complex-valued data file data.f in float
format (real part: 256 points, imaginary part: 256 points), and the output is written to
data.idct:

idct data.f -l 256 -c > data.idct

SEE ALSO

fft, dct

IFFT Speech Signal Processing Toolkit IFFT 89

NAME

ifft – inverse FFT for complex sequence

SYNOPSIS

ifft [–l L] [–{ R | I }] [infile]

DESCRIPTION

ifft calculates the Inverse Discrete Fourier Transform (IDFT) of complex-valued data
from infile (or standard input), sending the results to standard output. The input and
output data is in float format, arranged as follows.

Data block 1 Data block 2

Input

Data block 1 Data block 2

After IFFT
 (Output)

size size size size

size size size size

Real part Real partIm. part Im. part

Real part Real partIm. part Im. part

OPTIONS

–l L FFT size power of 2 [256]
–R output only real part [FALSE]
–I output only imaginary part [FALSE]

EXAMPLE

In this example, the inverse DFT is evaluated from a data file data.f in float format (real
part: 256 points, imaginary part: 256 points), and the output is written to data.ifft:

ifft data.f -l 256 > data.ifft

SEE ALSO

fft, fft2, fftr, fftr2, ifftr ifft2

90 IFFT2 Speech Signal Processing Toolkit IFFT2

NAME

ifft2 – 2-dimensional inverse FFT for complex sequence

SYNOPSIS

ifft2 [–l L] [+r] [–t] [–c] [–q] [–{ R | I }] [infile]

DESCRIPTION

ifft2 calculates the 2-dimensional Inverse Discrete Fourier Transform (IDFT) of complex-
valued data from infile (or standard input), sending the results to standard output. The
input and output data is in float format, arranged as follows.

Data block 1 Data block 2

Input

Data block 1 Data block 2

After IFFT
 (Output)

Real part Real partIm. part Im. part

Real part Real partIm. part Im. part

size ×size size ×size size ×size size ×size

size ×size size ×size size ×size size ×size

OPTIONS

–l L FFT size power of 2 [64]
+r regard input as real values rather than complex values [FALSE]
–t Output results in transposed form (see also fft2). [FALSE]
–c When results are transposed, 1 boundary data is copied from the

opposite side, and then output (L + 1) × (L + 1) data (see also
fft2).

[FALSE]

IFFT2 Speech Signal Processing Toolkit IFFT2 91

–q Output first 1/4 of data of FFT results only. As in the above c
option, boundary data is compensated and (L

2 + 1) × (L
2 + 1) data

are output.

FFT result
0 l-1

l-1

0

First quadrant
output

0 l/2+1

l/2+1

0
l/2

l/2

[FALSE]

–R output only real part [FALSE]
–I output only imaginary part [FALSE]

EXAMPLE

This example reads a sequence of 2-dimensional complex numbers in float format from
data.f file, evaluates its 2-dimensional IDFT and outputs it to data.dft file:

ifft2 < data.f > data.ifft2

SEE ALSO

fft, fft2, fftr, fftr2, ifft ifftr

92 IFFTR Speech Signal Processing Toolkit IFFTR

NAME

ifftr – inverse FFT for real sequence

SYNOPSIS

ifftr [–l L] [–m M] [infile]

DESCRIPTION

ifftr calculates the Inverse Discrete Fourier Transform (IDFT) of real-valued data from
infile (or standard input), sending the results to standard output. The input and output
data is in float format, arranged as follows.

Input sequence

L︷ ︸︸ ︷
real part

L︷ ︸︸ ︷
imaginary part

0 L − 1 0 L − 1

Output sequence

L︷ ︸︸ ︷
x0, x1, . . . , xM

0 L − 1

OPTIONS

–l L FFT size power of 2 [256]
–m M order of sequence [L-1]

EXAMPLE

In this example, IDFT is evaluated from a data file data.f in float format (real part: 256
points, imaginary part: 256 points), and the output is written to data.ifftr:

ifftr data.f -l 256 > data.ifftr

SEE ALSO

fft, fft2, fftr, fftr2, ifft ifft2

IGNORM Speech Signal Processing Toolkit IGNORM 93

NAME

ignorm – inverse gain normalization

SYNOPSIS

ignorm [–m M] [–g G] [–c C] [infile]

DESCRIPTION

ignorm reads normalized generalized cepstral coefficients cγ(m) from infile (or standard
input), and outputs the unnormalized coefficients to standard output.

Both input and output files are in float format.

To convert normalized generalized cepstral coefficients c′γ(m) into not-normalized gen-
eralized cepstral coefficients cγ(m), the following equation can be used.

cγ(m) =
(
c′γ(0)

)γ
c′γ(m), m > 0

Also, the gain K = cγ(0) is

cγ(0) =

(
c′γ(0)

)γ
− 1.0

γ
, 0 < |γ| ≤ 1

log c′γ(0), γ = 0

OPTIONS

–m M order of generalized cepstrum [25]
–g G power parameter γ of generalized cepstrum

γ = G
[0]

–c C power parameter γ of generalized cepstrum
γ = −1/(int)C
C must be C ≥ 1

EXAMPLE

In this example below, normalized generalized cepstral coefficients in float format are
read from data.ngcep (M = 15, γ = −0.5), and the not-normalized generalized cepstral
coefficients are output to data.gcep.

ignorm -m 15 -c 2 < data.ngcep > data.gcep

SEE ALSO

gcep, mgcep, gc2gc, mgc2mgc, freqt

94 IMPULSE Speech Signal Processing Toolkit IMPULSE

NAME

impulse – generate impulse sequence

SYNOPSIS

impulse [–l L] [–n N]

DESCRIPTION

impulse generates the unit impulse sequence of length L, sending the output to standard
output. The output is in float format as follows.

1, 0, 0, . . . , 0︸ ︷︷ ︸
L

If both –l and –n options are given, the last one is used.

OPTIONS

–l L length of unit impulse
if L < 0 then endless sequence is generated.

[256]

–n N order of unit impulse [255]

EXAMPLE

In the example below, an unit impulse sequence is passed through a digital filter and the
results are shown on the screen.

impulse | dfs -a 1 0.9 -b 1 2 1 | dmp +f

SEE ALSO

step, train, ramp, sin, nrand

IMSVQ Speech Signal Processing Toolkit IMSVQ 95

NAME

imsvq – decoder of multi stage vector quantization

SYNOPSIS

imsvq [–l L] [–n N] [–s S cbfile] [infile]

DESCRIPTION

imsvq decodes multi-stage vector-quantized data from a sequence of codebook indexes
from infile (or standard input), using codebooks specified by multiple –s options, sending
the result to standard output. The number of decoder stages is equal to the number of –s
options.

Input data is in int format, and output data is in float format.

OPTIONS

–l L length of vector [26]
–n N order of vector [L-1]
–s S cb f ile codebook

S codebook size
cb f ile codebook file

[N/A N/A]

EXAMPLE

In the example below, the decoded vector data.ivq is obtained from the first stage code-
book cbfile1 and the second stage codebook cbfile2, both of size 256, as well as from the
index file data.vq.

imsvq -s 256 cbfile1 -s 256 cbfile2 < data.vq > data.ivq

SEE ALSO

msvq, ivq, vq

96 INTERPOLATE Speech Signal Processing Toolkit INTERPOLATE

NAME

interpolate – interpolation of data sequence

SYNOPSIS

interpolate [–p P] [–s S] [–d] [infile]

DESCRIPTION

This function interpolates data points into the input data, with interval P and start number
S , and sends the result to standart output. The results are as follows:

x(0), x(1), x(2), . . .

then the output data will be

0, 0, . . . , 0︸ ︷︷ ︸
S−1

, x(0), 0, 0, . . . , 0︸ ︷︷ ︸
P

, x(1), 0, 0, . . . , 0︸ ︷︷ ︸
P

, x(2), . . .

If the –d option is given, the output data will be

0, 0, . . . , 0︸ ︷︷ ︸
S−1

, x(0), x(0), x(0), . . . , x(0)︸ ︷︷ ︸
P

, x(1), x(1), x(1), . . . , x(1)︸ ︷︷ ︸
P

, x(2), . . .

Input and output data are in float format.

OPTIONS

–p P interpolation period [10]
–s S start sample [0]
–d pad input data rather than 0 [FALSE]

EXAMPLE

This example decimates input data from data.f file with interval 2, interpolates 0 with
interval 2, and then outputs it to data.di file:

decimate -p 2 < data.f | interpolate -p 2 > data.di

SEE ALSO

decimate

IVQ Speech Signal Processing Toolkit IVQ 97

NAME

ivq – decoder of vector quantization

SYNOPSIS

ivq [–l L] [–n N] cbfile [infile]

DESCRIPTION

ivq decodes vector-quantized data from a sequence of codebook indexes from infile (or
standard input), using the codebook cbfile, sending the result to standard output. The
decoded output vector is of the form:

ci(0), ci(1), . . . , ci(L − 1).

Input data is in int format, and output data is in float format.

OPTIONS

–l L length of vector [26]
–n N order of vector [L-1]

EXAMPLE

In the following example, the decoded 25-th order output file data.ivq is obtained through
the index file data.vq and codebook cbfile.

ivq cbfile data.vq > data.ivq

SEE ALSO

vq, imsvq, msvq

98 LBG Speech Signal Processing Toolkit LBG

NAME

lbg – LBG algorithm for vector quantizer design

SYNOPSIS

lbg [–l L] [–n N] [–t T] [–s S] [–e E] [–F F] [–i I] [–m M] [–S s]

[–c C] [–d D] [–r R] [indexfile] < infile

DESCRIPTION

lbg uses the LBG algorithm to train a codebook from a sequence of vectors from infile
(or standard input), sending the result to standard output.

The input sequence consists of T float vectors x, each of size L

x(0), x(1), . . . , x(T − 1).

The result is a codebook consisting of E float vectors, each of length L,

CE = {cE(0), cE(1), . . . , cE(E − 1)},

generated by the following algorithm.

step.0 When an initial codebook CS is not assigned, the initial codebook is obtained
from the whole collection of training data as follows,

c1(0) =
1
T

T−1∑
n=0

x(n)

and the initial codebook with S = 1 is C1 = {c1(0)}.
step.1 From codebook CS obtain C2S . For this step, the normalized random vector of

size L and the splitting factor R are used as follows,

c2S (n) =

 cS (n) + R · rnd (0 ≤ n ≤ S − 1)
cS (n − S) − R · rnd (S ≤ n ≤ 2S − 1)

and we make D0 = ∞ , k = 0.

step.2 First, make sure that k ≤ I where I is the maximum iterations number specified
by –i option. If it is true, proceed to the following steps. If not, then go to
step.4. The present codebook C2S is now applied to the training vectors. After
that, the mean Euclidean distance Dk is evaluated from every training vector
and their corresponding code vector. If the following condition∣∣∣∣∣Dk−1 − Dk

Dk

∣∣∣∣∣ < D

LBG Speech Signal Processing Toolkit LBG 99

Figure 2: step.0: initialize codebook Figure 3: step.1: split codebook CS into C2S

Figure 4: step.2: update codebook

is met, then go to step.4. If it is not met, then go to step.3. The steps 0, 1, and
2 are illustrated in figure 2, 3, and 4, respectivelly.∣∣∣∣∣Dk−1 − Dk

Dk

∣∣∣∣∣ < D

step.3 Centroids are evaluated from the results obtained in step.2. Then, the code-
book C2S is updated. Also, if a cell has less than M training vectors, then the
corresponding code vector is erased from the codebook, and a new code vec-
tor is generated from either: 1) the code vector c2S (j) corresponding to the cell
with more training vectors , as follows.

c2S (i) = c2S (j) + R · rnd

Also, c2S (j) is modified as follows.

c2S (j) = c2S (j) − R · rnd

2) the vector p, which internally divides two centroids proportionally the num-
ber of training vectors for the cell. They are split from the same parent cen-
troid. The vector p is given by:

p =
n jc2S (i) + nic2S (j)

ni + n j
,

100 LBG Speech Signal Processing Toolkit LBG

where ni and n j represent the number of training vectors for the cells c2S (i)andc2S (j),
respectivelly. The update method is as follows.

c2S (i) = p+ R · rnd,

c2S (j) = p− R · rnd.

If the number of traning vectors for the cell is less than M when k = 3, the
dividing vector p and the update results are given as follows:

��
��

k = 0
Parent centroid

�����������

Z
Z

Z
Z

Z
Z

ZZ~n nk = 1
k = 1�

�
�

�
�

�
�

��

S
S

S
S

S
SSwn n

k = 2
k = 2

?

�
�

�
�n n

k = 3
k = 3

c2S (i)
c2S (j)

~HHHHHHH

ni n j

dividing vector p

6

?

n

n

+R · rnd

−R · rnd

The type of split can be specified by the –c option. After that, we assign
k = k + 1 and then go back to step.2

step.4 If 2S = E then, end. If not, then make S = 2S and go back to step.1.

OPTIONS

–l L length of vector [26]
–n N order of vector [L−1]
–t T number of training vector [N/A]
–s S initial codebook size [1]
–e E final codebook size [256]
–F F initial codebook filename [NULL]
–i I maximum number of iteration for centroid update [1000]
–m M minimum number of training vectors for each cell [1]
–S s seed for normalized random vector [1]

LBG Speech Signal Processing Toolkit LBG 101

–c C type of exception procedure for centroid update
when the number of training vectors for the cell is less than M

C = 1 split the centroid with most training vectors
C = 2 split the vector which internally divide

two centroids sharing the same parent centroid,
in proportion to the number of training vectors for the cell.

[1]

Usually, the options below do not need to be assigned.
–d D end condition [0.0001]
–r R splitting factor [0.0001]

EXAMPLE

In the following example, a codebook of size 1024 is generated from the 39-th order
training vector data.f in float format. It is also specified that the iterations for the centroid
update are at most 100 times, that each centroid contains at least 10 training vectors and
that random vectors for the centroid update are generated with seed 5. The output is
written to cbfile.

lbg -n 39 -e 1024 -i 100 -m 10 -S 5 < data.f > cbfile

SEE ALSO

vq, ivq, msvq

102 LEVDUR Speech Signal Processing Toolkit LEVDUR

NAME

levdur – solve an autocorrelation normal equation using Levinson-Durbin method

SYNOPSIS

levdur [–m M] [–f F] [infile]

DESCRIPTION

levdur calculates linear prediction coefficients (LPC) from the autocorrelation matrix
from infile (or standard input), sending the result to standard output.

The input is the M-th order autocorrelation matrix

r(0), r(1), . . . , r(M).

levdur uses the Levinson-Durbin algorithm to solve a system of linear equations obtained
from the autocorrelation matrix.

Input and output data are in float format.

The linear prediction coefficients are the set of coefficients K, a(1), . . . , a(M) of an all-
pole digital filter

H(z) =
K

1 +
M∑

i=1

a(k)z−i

.

The linear prediction coefficients are evaluated by solving the following set of linear
equations, which were obtained through the autocorrelation method,

r(0) r(1) . . . r(M − 1)

r(1) r(0)
...

...
. . .

r(M − 1) . . . r(0)

a(1)
a(2)
...

a(M)

 = −

r(1)
r(2)
...

r(M)

The Durbin iterative and efficient algorithm is used to solve the system above. It takes
advantage of the Toeplitz characteristic of the autocorrelation matrix:

E(0) = r(0)

k(i) =

−r(i) −
i∑

j=1

a(i−1)(j)r(i − j)

E(i−1)

a(i)(i) = k(i)

a(i)(j) = a(i−1)(j) + k(i)a(i−1)(i − j), 1 ≤ j ≤ i − 1 (1)

E(i) = (1 − k2(i))E(i−1) (2)

Also, for i = 1, 2, . . . ,M, equations (1) and (2) are applied recursively, and the gain K is
calculated as follows.

K =
√

E(M)

LEVDUR Speech Signal Processing Toolkit LEVDUR 103

OPTIONS

–m M order of correlation [25]
–f F mimimum value of the determinant of the normal matrix [0.000001]

EXAMPLE

In this example, input data is read in float format from data.f and linear prediction coef-
ficients are written to data.lpc:

frame < data.f | window | acorr -m 25 | levdur > data.lpc

SEE ALSO

acorr, lpc

104 LINEAR INTPL Speech Signal Processing Toolkit LINEAR INTPL

NAME

linear intpl – linear interpolation of data

SYNOPSIS

linear intpl [–l L] [–m M] [–x xmin xmax] [–i xmin] [–j xmax] [infile]

DESCRIPTION

linear intpl reads a 2-dimensional input data sequence from infile (or standard input) in
which the x-axis values are linearly interpolated by equally-spaced L − 1 points, and
outputs the y-axis values.

If the input data is
x0, y0

x1, y1
...

xK , yK

then the output data will be
y0, y1, . . . , yL−1

Input and output data are in float format.

This command can also interpolate data sequence in wchich the x-axis values are not
equally-spaced, such as digital filter characteristics.

OPTIONS

–l L output length [256]
–m M number of interpolation points [L-1]
–x xmin xmax minimum and maximum values of x-axis in input data [0.0 0.5]
–i xmin minimum values of x-axis in input data [0.0]
–j xmax maximum values of x-axis in input data [0.5]

EXAMPLE

This example decimates input data from data.f file with interval 2, interpolates 0 with
interval 2, and then outputs it to data.di file:

When input data data.f contains the following data,

0, 2
2, 2
3, 0
5, 1

LINEAR INTPL Speech Signal Processing Toolkit LINEAR INTPL 105

this example linearly interpolates input data and outputs it to data.intpl

linear_intpl -m 10 -x 0 5 < data.f > data.intpl

And the result is given by:

2, 2, 2, 2, 2, 1, 0, 0.25, 0.5, 0.75, 1

106 LMADF Speech Signal Processing Toolkit LMADF

NAME

lmadf – LMA digital filter for speech synthesis(5; 17)

SYNOPSIS

lmadf [–m M] [–p P] [–i I] [–P Pa] [–v] [–t] [–k] cfile [infile]

DESCRIPTION

lmadf derives a Log Magnitude Approximation filter from the cepstral coefficients c(0), c(1), . . . , c(M)
in cfile and uses it to filter an excitation sequence from infile (or standard input) in order
to synthesize speech data, sending the result to standard output.

Input and output data are in float format.

The LMA filter is an extremely precise approximation of the exponential transfer func-
tion obtained from M-th order cepstral coefficients c(m) as follows.

H(z) = exp
M∑

m=0

c(m)z−m

If we remove the gain K = exp c(0) from the transfer function H(z), then we obtain the
following transfer function

D(z) = exp
M∑

m=1

c(m)z−m,

which can be realized using the basic FIR filter

F(z) =
M∑

m=1

c(m)z−m

as shown in Figure 1(a). Also, as it can be seen in Figure 1(b), the basic filter F(z) can
be decomposed as follows

F(z) = F1(z) + F2(z)

where

F1(z) = c(1)z−1

F2(z) =
M∑

m=2

c(m)z−m

By doing this decomposition, the accuracy of the approximation is improved. Also, the
values of the coefficients A4,l are given in table 1

LMADF Speech Signal Processing Toolkit LMADF 107

F(z) F(z) F(z) F(z)s s s
JJ JJ JJ JJ

i+-
Input s

- i+ -
Output

A4,1 A4,2 A4,3 A4,4

− −

s s s s

�
�7
��� CCO S

So

�
�7
��� CCO S

So

(a)

RL(F1(z)) RL(F2(z))- - -
x(n) y(n)

Input Output

(b)

Figure 1: (a) RL(F(z)) ' D(z) L = 4
(b) 2 level cascade realization

RL(F1(z)) · RL(F2(z)) ' D(z)

Table 1: The values for the coefficients AL,l

l A4,l A5,l

1 4.999273 × 10−1 4.999391 × 10−1

2 1.067005 × 10−1 1.107098 × 10−1

3 1.170221 × 10−2 1.369984 × 10−2

4 5.656279 × 10−4 9.564853 × 10−4

5 3.041721 × 10−5

OPTIONS

–m M order of cepstrum [25]
–p P frame period [100]
–i I interpolation period [1]
–P Pa order of the Padé approximation

Pa should be 4 or 5
[4]

–k filtering without gain [FALSE]
–v inverse filter [FALSE]

108 LMADF Speech Signal Processing Toolkit LMADF

–v transpose filter [FALSE]

EXAMPLE

In this example, the excitation is generated from the pitch data read in float format from
data.pitch, passed through an LMA filter obtained from cepstrum file data.cep, and the
synthesized speech is written to data.syn.

excite < data.pitch | lmadf data.cep > data.syn

SEE ALSO

uels, acep, poledf, ltcdf, glsadf, mlsadf, mglsadf

LPC Speech Signal Processing Toolkit LPC 109

NAME

lpc – LPC analysis using Levinson-Durbin method

SYNOPSIS

lpc [–l L] [–m M] [–f F] [infile]

DESCRIPTION

lpc calculates linear prediction coefficients (LPC) from L-length framed windowed data
from infile (or standard input), sending the result to standard output.

For each L-length input vector

x(0), x(1), . . . , x(L − 1),

the autocorrelation function is calculated (see acorr), then the gain K and the linear
prediction coefficients

K, a(1), . . . , a(M)

are calculated using the Levinson-Durbin algorithm (see levdur).

Input and output data are in float format.

OPTIONS

–l L frame length [256]
–m M order of LPC [25]
–f F mimimum value of the determinant of the normal matrix [0.000001]

EXAMPLE

In this example, the 20-th order linear prediction analysis is applied to input read from
data.f in float format, and the linear prediction coefficients are written to data.lpc:

frame < data.f | window | lpc -m 20 > data.lpc

SEE ALSO

acorr, levdur, lpc2par, par2lpc, lpc2c, lpc2lsp, lsp2lpc ltcdf, lspdf

110 LPC2C Speech Signal Processing Toolkit LPC2C

NAME

lpc2c – transform LPC to cepstrum

SYNOPSIS

lpc2c [–m M1] [–M M2] [infile]

DESCRIPTION

lpc2c calculates LPC cepstral coefficients from linear prediction (LPC) coefficients from
infile (or standard input), sending the result to standard output. That is, when the input
sequence is

σ, a(1), a(2), . . . , a(p)

where
H(z) =

σ

A(z)
=

σ

1 +
P∑

k=1

a(k)z−k

then the LPC cepstral coefficients are evaluated as follows.

c(n) =

ln(h), n = 0

−a(n) = −
n−1∑
k=1

k
n

c(k)a(n − k), 1 ≤ n ≤ P

−
n−1∑

k=n−P

k
n

c(k)a(n − k), n > P

And the sequence of cepstral coefficients

c(0), c(1), . . . , c(M)

is given as output. Input and output data are in float format.

OPTIONS

–m M1 order of LPC [25]
–M M2 order of cepstrum [25]

EXAMPLE

In the example below, a 10-th order LPC analysis is undertaken after passing the speech
data data.f in float format through a window, 15-th order LPC cepstral coefficients are
calculated, and the result is written to data.cep.

frame < data.f | window | lpc -m 10 |\

lpc2c -m 10 -M 15 > data.cep

LPC2C Speech Signal Processing Toolkit LPC2C 111

SEE ALSO

lpc, gc2gc, mgc2mgc, freqt

112 LPC2LSP Speech Signal Processing Toolkit LPC2LSP

NAME

lpc2lsp – transform LPC to LSP

SYNOPSIS

lpc2lsp [–m M] [–s S] [–k] [–l] [–o O] [–n N] [–p P] [–q Q] [–d D]
[infile]

DESCRIPTION

lpc2lsp calculates line spectral pair (LSP) coefficients from M-th order linear prediction
(LPC) coefficients from infile (or standard input), sending the result to standard output.

Although the gain K is included in the LPC input vectors as follows

K, a(1), . . . , a(M)

K is not used in the calculation of the LSP coefficients.

The M-th order polynomial linear prediction equation A(z) is

AM(z) = 1 +
M∑

m=1

a(m)z−m

The PARCOR coefficients satisfy the following equations.

Am(z) = Am−1(z) − k(m)Bm−1(z)

Bm(z) = z−1(Bm−1(z) − k(m)Am−1(z))

Also, the initial conditions are set as follows,

A0(z) = 1

B0(z) = z−1. (1)

When the linear prediction polynomial equation of M-th order AM(z) are given, and the
evaluation of AM+1(z) is obtained with the value of k(M + 1) set to 1 or −1, then P(z) and
Q(z) are defined as follow.

P(z) = AM(z) − BM(z)
Q(z) = AM(z) + BM(z)

Making k(M + 1) equal to ±1 means that, regarding PARCOR coefficients, the bound-
ary condition for the glottis of the fixed vocal tract model satisfies a perfect reflection
characteristic. Also, AM(z) can be written as

AM(z) =
P(z) + Q(z)

2
.

Also, to make sure the roots of AM(z) = 0 will all be inside the unit circle, i.e. to make
sure AM(z) is stable, the following conditions must be met.

LPC2LSP Speech Signal Processing Toolkit LPC2LSP 113

•All of the roots of P(z) = 0 and Q(z) = 0 are on the unit circle line.

•the roots of P(z) = 0 and Q(z) = 0 should be above the unit circle line and interca-
late.

If we assume that M is an even number, then P(z) and Q(z) can be factorized as follows.

P(z) = (1 − z−1)
∏

i=2,4,...,M

(1 − 2z−1 cosωi + z−2)

Q(z) = (1 + z−1)
∏

i=1,3,...,M−1

(1 − 2z−1 cosωi + z−2)

Also, the values of ωi will satisfy the following ordering condition.

0 < ω1 < ω2 < · · · < ωM−1 < ωM < π

If M is an odd number, a solution can be found in a similar way.

The coefficients ωi obtained through factorization are called LSP coefficients.

OPTIONS

–m M order of LPC [25]
–s S sampling frequency (kHz) [10.0]
–k output gain [TRUE]
–l output log gain instead of linear gain [FALSE]
–o O output format

0 normalized frequency (0 . . . π)
1 normalized frequency (0 . . . 0.5)
2 frequency (kHz)
3 frequency (Hz)

[0]

Usually, the options below do not need to be assigned.
–n N split number of unit circle [128]
–p P maximum number of interpolation [4]
–d D end condition of interpolation [1e-06]

EXAMPLE

In the following example, speech data is read in float format from data.f, 10-th order
LPC coefficients are calculated, and the LSP coefficients are evaluated and written to
data.lsp:

frame < data.f | window | lpc -m 10 |\

lpc2lsp -m 10 > data.lsp

SEE ALSO

lpc, lsp2lpc, lspdf

114 LPC2PAR Speech Signal Processing Toolkit LPC2PAR

NAME

lpc2par – transform LPC to PARCOR

SYNOPSIS

lpc2par [–m M] [–g G] [–c C] [–s] [infile]

DESCRIPTION

lpc2par calculates PARCOR coefficients from M-th order linear prediction (LPC) coef-
ficients from infile (or standard input), sending the result to standard output.

The LPC input format is
K, a(1), . . . , a(M),

and the PARCOR output format is

K, k(1), . . . , k(M).

If the –s option is assigned, the stability of the filter is analyzed. If the filter is stable,
then 0 is returned. If the filter is not stable, then 1 is returned to the standard output.

Input and output data are in float format.

The transformation from LPC coefficients to PARCOR coefficients is undertaken as fol-
lows:

k(m) = a(m)(m)

a(m−1)(i) =
a(m)(i) + a(m)(m)a(m)(m − i)

1 − k2(m)
,

where 1 ≤ i ≤ m − 1, m = p, p − 1, . . . , 1. The initial condition is

a(M)(m) = a(m), 1 ≤ m ≤ M.

If we use the –g option, then the input contains normalized generalized cepstral coef-
ficients with power parameter γ and the output contains the corresponding PARCOR
coefficients. In other words, the input is

K, c′γ(1), . . . , c′γ(M)

and the initial condition is

a(M)(m) = γc′γ(M), 1 ≤ m ≤ M.

Also with respect to the stability analysis, the PARCOR coefficients are checked through
the following equation.

−1 < k(m) < 1

If this condition satisfy then the filter is stable.

LPC2PAR Speech Signal Processing Toolkit LPC2PAR 115

OPTIONS

–m M order of LPC [25]
–g G gamma of generalized cepstrum

γ = G
[0]

–c C gamma of generalized cepstrum
γ = −1/(int)C
C must be C ≥ 1

–s check stable or unstable [FALSE]

EXAMPLE

In the example below, a linear prediction analysis is done in the input file data.f in float
format, the LPC coefficients are then transformed into PARCOR coefficients, and the
output is written to data.rc:

frame < data.f | window | lpc | lpc2par > data.rc

SEE ALSO

acorr, levdur, lpc, par2lpc, ltcdf

116 LSP2LPC Speech Signal Processing Toolkit LSP2LPC

NAME

lsp2lpc – transform LSP to LPC

SYNOPSIS

lsp2lpc [–m M] [–s S] [–k] [–l] [–i I] [infile]

DESCRIPTION

lsp2lpc calculates linear prediction (LPC) coefficients from M-th order line spectral pair
(LSP) coefficients from infile (or standard input), sending the result to standard output.

The LSP input input format is

[K], l(1), . . . , l(M),

and the LPC output format is
K, a(1), . . . , a(M).

By default, lsp2lpc assumes that the LSP input vectors include the gain K, and it passes
that gain value through to the LPC output vectors. However, if the –k option is present,
lsp2lpc assumes that K is not present in the LSP input vectors, and it sets K to 1.0 in the
LPC output vectors.

OPTIONS

–m M order of LPC [25]
–s S sampling frequency (kHz) [10.0]
–k input & output gain [TRUE]
–l regard input as log gain and output linear gain [FALSE]
–i I input format

0 normalized frequency (0 . . . π)
1 normalized frequency (0 . . . 0.5)
2 frequency (kHz)
3 frequency (Hz)

[0]

EXAMPLE

In the example below, 10-th order LSP coefficients in float format are read from file
data.lsp, the linear prediction coefficients are evaluated, and written to data.lpc:

lsp2lpc -m 10 < data.lsp > data.lpc

SEE ALSO

lpc, lpc2lsp

LSPCHECK Speech Signal Processing Toolkit LSPCHECK 117

NAME

lspcheck – check stability and rearrange LSP

SYNOPSIS

lspcheck [–m M] [–s S] [–k] [–i I] [–o O] [–r R] [infile]

DESCRIPTION

lspcheck tests the stability of the filter corresponding to the line spectral pair (LSP) co-
efficients from infile (or standard input), sending the result to standard output.

By default, the output is the same as the input. When the –c option is given, the output is
LSP coefficients that have been rearranged so the filter is stable. If an frame is unstable,
an ASCII report of the number of the frame is sent to standard error.

OPTIONS

–m M order of LPC [25]
–s S sampling frequency (kHz) [10.0]
–k input & output gain [TRUE]
–i I input format [0]
–o O output format

0 normalized frequency (0 . . . π)
1 normalized frequency (0 . . . 0.5)
2 frequency (kHz)
3 frequency (Hz)

[I]

–c rearrange LSP
check the distance between two consecutive LSPs
and extend the distance (if it is smaller than R × π/M)

[N/A]

–r R threthold of rearrangement of LSP
s.t. 0 ≤ R ≤ 1

[0.0]

EXAMPLE

In the following example, 10-th order LSP coefficients are read from data.lsp in float
format, stability is checked, the unstable coefficients are rearranged so that they become
stable, and the distance between two consecutive LSPs are extended to π/1000 if it is
smaller than π/1000, and the rearranged LSP coefficients are written to data.lspr:

lspcheck -m 10 -c -r 0.01 < data.lsp > data.lspr

SEE ALSO

lpc, lpc2lsp, lsp2lpc

118 LSPDF Speech Signal Processing Toolkit LSPDF

NAME

lspdf – LSP speech synthesis digital filter

SYNOPSIS

lspdf [–m M] [–p P] [–i I] [–s S] [–o O] [–k] [–l] lspfile [infile]

DESCRIPTION

lspdf derives an LSP digital filter from the line spectral pair (LSP) coefficients in lspfile
and uses it to filter an excitation sequence from infile (or standard input) and synthesize
speech data, sending the result to standard output.

Both input and output files are in float format.

OPTIONS

–m M order of coefficients [25]
–p P frame period [100]
–i I interpolation period [1]
–k filtering without gain [FALSE]
–l regard input as log gain [FALSE]

EXAMPLE

In the example below, excitation is generated from the pitch information given in data.pitch
in float format. This excitation is passed through the LSP synthesis filter constructed
from the LSP file data.lsp, and the synthesized speech is written to data.syn:

excite < data.pitch | lspdf data.lsp > data.syn

SEE ALSO

lsp, lpc2lsp

LTCDF Speech Signal Processing Toolkit LTCDF 119

NAME

ltcdf – all-pole lattice digital filter for speech synthesis

SYNOPSIS

ltcdf [–m M] [–p P] [–i I] [–k] rcfile [infile]

DESCRIPTION

ltcdf derives an all-pole lattice digital filter from PARCOR coefficients in rcfile and uses
it to filter an excitation sequence from infile (or standard input) and synthesize speech
data, sending the result to standard output.

Both input and output files are in float format.

OPTIONS

–m M order of coefficients [25]
–p P frame period [100]
–i I interpolation period [1]
–k filtering without gain [FALSE]

EXAMPLE

In the example below, excitation is generated from the pitch information given in data.pitch
in float format. This excitation is passed through the lattice filter constructed from the
LPC file data.rc, and the synthesized speech is written to data.syn:

excite < data.pitch | ltcdf data.k > data.syn

SEE ALSO

lpc, acorr, levdur, lpc2par, par2lpc, poledf, zerodf, lspdf

120 MC2B Speech Signal Processing Toolkit MC2B

NAME

mc2b – transform mel-cepstrum to MLSA digital filter coefficients

SYNOPSIS

mc2b [–a A] [–m M] [infile]

DESCRIPTION

mc2b calculates MLSA filter coefficients b(m) from mel-cepstral coefficients cα(m) from
infile (or standard input), sending the result to standard output.

Both input and output files are in float format.

The coefficients are given as follows:

b(m) =

 cα(M), m = M
cα(m) − αb(m + 1), 0 ≤ m < M

These coefficients b(m) can be directly used in the implementation of a MLSA filter.
mc2b implements the inverse transformation undertaken by the command b2mc.

OPTIONS

–a A all-pass constant α [0.35]
–m M order of mel-cepstrum [25]

EXAMPLE

In the example below, speech data is read in float format from data.f, a 12-th order
mel-cepstral analysis is undertaken, these mel-cepstral coefficients are transformed into
MLSA filter coefficients, and then the coefficients b(m) are written to data.b:

frame < data.f | window | mcep -m 12 |\

mc2b -m 12 > data.b

SEE ALSO

mlsadf, mglsadf, b2mc, mcep, mgcep, amcep

MCEP Speech Signal Processing Toolkit MCEP 121

NAME

mcep – mel cepstral analysis(10; 12)

SYNOPSIS

mcep [–a A] [–m M] [–l L] [–q Q] [–i I] [–j J] [–d D] [–e e] [–E E] [–f F]
[infile]

DESCRIPTION

mcep uses mel-cepstral analysis to calculate mel-cepstral coefficients cα(m) from L-
length framed windowed data from infile (or standard input), sending the result to stan-
dard output.

Input and output data are in float format.

In the mel-cepstral analysis, the spectrum of the speech signal is modeled by M-th order
mel-cepstral coefficients cα(m) as follows.

H(z) = exp
M∑

m=0

cα(m)z̃−m

The command “mcep” applies a cost function based on the unbiased log spectrum esti-
mation method. The variable z̃−1 can be expressed as the following first order all-pass
function

z̃−1 =
z−1 − α

1 − αz−1 .

The phase characteristic is given by the variable α. For a sampling rate of 16 kHz, α is
set to 0.42. For a sampling rate 10 kHz, α is set to 0.35. For a sampling rate 8 kHz, α is
set to 0.31. By making these choices for α, the mel-scale becomes a good approximation
to the human sensitivity to the loudness of speech.

The Newton-Raphson method is used to minimize the cost function when evaluating
mel-cepstral coefficients.

OPTIONS

–a A all-pass constant α [0.35]
–m M order of mel cepstrum [25]
–l L frame length [256]
–q Q input data style

Q = 0 windowed data sequence
Q = 1 20 × log | f (w)|
Q = 2 ln | f (w)|
Q = 3 | f (w)|
Q = 4 | f (w)|2

[0]

122 MCEP Speech Signal Processing Toolkit MCEP

Usually, the options below do not need to be assigned.
–i I minimum iteration of Newton-Raphson method [2]
–j J maximum iteration of Newton-Raphson method [30]
–d D end condition of Newton-Raphson [0.001]
–e e small value added to periodgram [0.0]
–E E floor in db calculated per frame [N/A]
–f F minimum value of the determinant of the normal matrix [0.000001]

EXAMPLE

In the example below, speech data is read in float format from data.f and analyzed. Then,
mel-cepstral coefficients are written to data.mcep:

frame < data.f | window | mcep > data.mcep

frame < data.f | window | fftr -A -H | mcep -q 3 > data.mcep

SEE ALSO

uels, gcep, mgcep, mlsadf

MERGE Speech Signal Processing Toolkit MERGE 123

NAME

merge – data merge

SYNOPSIS

merge [–s S] [–l L1] [–n N1] [–L L2] [–N N2]

[–o] [+type] file1 [infile]

DESCRIPTION

merge merges, on a frame-by-frame basis, data from file1 into the data from infile (or
standard input), sending the result to standard output, as described below.

x(S-1+L)

Insert mode

Overwrite mode

y(0) y(L -1)

x(0) x(S-1) x(L -1)

file1

infile(stdin)

output

y(0) y(L -1)

x(0) x(S-1) x(L -1)

file1

infile(stdin)

output

1

2

2

2

1

OPTIONS

–s S insert point [0]
–l L1 frame length of input data [25]
–n N1 order of input data [L1 − 1]
–L L2 frame length of insert data [10]
–N N2 order of insert data [L2 − 1]

124 MERGE Speech Signal Processing Toolkit MERGE

–o overwrite mode [FALSE]
+t input data format

c char (1 byte) C unsigned char (1 byte)
s short (2 bytes) S unsigned short (2 bytes)
i3 int (3 bytes) I3 unsigned int (3 bytes)
i int (4 bytes) I unsigned int (4 bytes)
l long (4 bytes) L unsigned long (4 bytes)
le long long (8 bytes) LE unsigned long long (8 bytes)
f float (4 bytes) d double (8 bytes)

[f]

EXAMPLE

The following example inserts blocks of 2 samples from data.f2 in short format into
data.f1, also in short format. The frame length of the file data.f1 is 3, and the blocks
from data.f2 will be inserted from the 3rd sample of every frame. The result is written
to data.merge.

merge +f -s 2 -l 3 -L 2 +s data.f2 < data.f1 > data.merge

For example, if the data.f1 file is given by

1, 1, 1, 2, 2, 2, . . .

, and the data.f2 file is given by
2, 3, 5, 6, . . .

then the output data.merge will be

1, 1, 2, 3, 1, 2, 2, 5, 6, 2, . . .

The next example overwrites blocks of 2 samples from data.f2 in long format into
data.f1, also in long format, the frame length of the file data.f1 is 4, and the blocks from
data.f2 will be inserted from the 2nd sample of every frame. The result is data.merge.

merge +f -s 2 -l 4 -L 2 +l -o data.f2 < data.f1 > data.merge

For example, if the data.f1 file is given by

1, 1, 1, 1, 2, 2, 2, 2, . . .

, and the data.f2 file is given by
3, 4, 5, 6, . . .

then the output data.merge will be

1, 3, 4, 1, 2, 5, 6, 2, . . .

SEE ALSO

bcp

MFCC Speech Signal Processing Toolkit MFCC 125

NAME

mfcc – mel-frequency cepstral analysis

SYNOPSIS

mfcc [–a A] [–e E] [–l L1] [–L L2] [–s or –f F] [–m M]
[–n N] [–s S] [–w W] [–d] [– E] [–0][infile]

DESCRIPTION

mfcc uses mel-frequency cepstral analysis to calculate mel-frequency cepstrum from L1-
length framed data from infile (or standard input), sending the result to standard out-
put.Since mfcc can apply a window function to input data in the function, it is not neces-
sary to use windowed data as input. The input time domain sequence of length L1 is of
the form:

x(0), x(1), . . . , x(L1 − 1)

Also, note that the input and output data are in float format, and that the output data
cannot be used for speech synthesis through the MLSA filter.

OPTIONS

–a A preemphasise coefficient [0.97]
–c C liftering coefficient [22]
–e E flooring value for calculating log(x) in filterbank analysis

if x < E then return x = E
[1.0]

–l L1 frame length of input [256]
–L L2 frame length for fft. default value 2n satisfies L1 < 2n [2n]
–m M order of mfcc [12]
–n N order of channel for mel-filter bank [20]
–s S sampling frequency (kHz) [16.0]
–w W type of window

0 Hamming
1 Do not use a window function

[0]

–d use dft (without using fft) for dct [FALSE]
–E output energy [FALSE]
–0 output 0’th static coefficient [FALSE]

if the -E or -0 option is given, energy E or 0’th static coefficient C0 is outputted as
follows.

mc(0),mc(1), . . . ,mc(m − 1), E(C0)

Also, if both -E and -0 option are given, the output is as follows.

mc(0),mc(1), . . . ,mc(m − 1),C0, E

126 MFCC Speech Signal Processing Toolkit MFCC

EXAMPLE

In the example below, speech data in float format is read from data.f. Here, we specify
the frame length, frame shift and sampling frequency as 40ms, 10ms and 16kHz, re-
spectivelly. The 12 order mel-frequency cepstral coefficients, together with the energy
component, are outputted to data.mfc.

frame -l 640 -p 160 data.f |\

mfcc -l 640 -m 12 -s 16 -E > data.mfc

Also, in case we want to calculate the coefficients the same way as in HTK, following
the conditions:

SOURCEFORMAT = NOHEAD

SOURCEKIND = WAVEFORM

SOURCERATE = 625 # Sampling rate (1 / 16000 * 10ˆ7)

TARGETKIND = MFCC_D_A_E

TARGETRATE = 100000 # Frame shift (ns)

WINDOWSIZE = 400000 # Frame length (ns)

DELTAWINDOW = 1 # Delta widndow size

ACCWINDOW = 1 # Accelaration widndow size

ENORMALISE = FALSE

We have to use the following command in SPTK. Below, because of the difference of
the calcuration method of regression coefficients between SPTK and HTK, differencial
coefficients are specified directly using -d option in delta command.

frame -l 640 -p 160 data.f |\

mfcc -l 640 -m 12 -s 16 -E > data.mfc

delta -m 12 -d -0.5 0 0.5 |\

-d 0.25 0 -0.5 0 0.25 data.mfc > data.mfc.diff

Here, because of the difference in the calculation method of regression coefficients be-
tween SPTK and HTK, differencial coefficients are specified directly using the –d option
in delta dommand. The correspondence between the option of SPTK’s command option
and the HTK’s configuration for extracting mel-frequency cepstrum is shown in Table
2. Please, refer to the HTKBook for more information on extracting mel-frequency cep-
strum with HTK.

SEE ALSO

frame, gcep, mcep, mgcep, spec

MFCC Speech Signal Processing Toolkit MFCC 127

Table 2: Configuration for extracting MFCC

Settings SPTK HTK

pre-emphasis coefficient -a (at mfcc command) PREEMCOEF
liftering coefficient -c (at mfcc command) CEPLIFTER

small value for calculating log() -e (at mfcc command) N/A
sampling rate -s (at mfcc command) SOURCERATE

frame shift -p (at frame command) TARGETRATE
frame length of input -l (at frame command) WINDOWSIZE

-l (at mfcc command)
frame length for fft -L (at mfcc command) N/A

(automatically calculated)
order of cepstrum -m (at mfcc command) NUMCEPS

order of channel for mel-filter bank -n (at mfcc command) NUMCHANS
use hamming window -w (at mfcc command) USEHAMMING

use dft -d (at mfcc command) N/A
output energy -E (at mfcc command) TARGETKIND

output 0’th static coefficient -0 (at mfcc command) TARGETKIND
delta window size -r (at delta command) DELTAWINDOW

acceleration window size -r (at delta command) ACCWINDOW
Normalize log energy N/A ENORMALISE

128 MGC2MGC Speech Signal Processing Toolkit MGC2MGC

NAME

mgc2mgc – frequency and generalized cepstral transformation

SYNOPSIS

mgc2mgc [–m M1] [–a A1] [–g G1] [–c C1] [–n] [–u]
[–M M2] [–A A2] [–G G2] [–C C2] [–N] [–U] [infile]

DESCRIPTION

mgc2mgc transforms mel-generalized cepstral coefficients cα1,γ1(0), . . . , cα1,γ1(M1) from
infile (or standard input) into a different set of mel-generalized cepstral coefficients
cα2,γ2(0), . . . , cα2,γ2(M2) sending the result to standard output.

α characterizes the frequency-warping transform, while γ characterizes the generalized
log magnitude transform.

Input and output data are in float format.

First, a frequency transformation (α1 → α2) is undertaken in the input mel-generalized
cepstral coefficients cα1,γ1(m), and cα2,γ1(m) is calculated as follows.

α = (α2 − α1)/(1 − α1α2)

c(i)
α2,γ1

(m) =

cα1,γ1(−i) + α c(i−1)

α2,γ1(0), m = 0
(1 − α2) c(i−1)

α2,γ1(0) + α c(i−1)
α2,γ1(1), m = 1

c(i−1)
α2,γ1(m − 1) + α

(
c(i−1)
α2,γ1(m) − c(i)

α2,γ1(m − 1)
)
, m = 2, . . . ,M2

i = −M1, . . . ,−1, 0

Then the gain is normalized and c′α2,γ1
(m) is evaluated.

Kα2 = s−1
γ1

(
c(0)
α2,γ1

(0)
)
,

c′α2,γ1
(m) = c(0)

α2,γ1
(m)/

(
1 + γ1 c(0)

α2,γ1
(0)

)
, m = 1, 2, . . . ,M2

Afterwards, c′α2,γ1
(m) is transformed into c′α2,γ2

(m) through a generalized log transforma-
tion (γ1 → γ2).

c′α2,γ2
(m) = c′α2,γ1

(m) +
m−1∑
k=1

k
m

{
γ2 cα2,γ1(k) c′α2,γ2

(m − k) − γ1 cα2,γ2(k) c′α2,γ1
(m − k)

}
,

m = 1, 2, . . . ,M2

Finally, the gain is inversely normalized and cα2,γ2(m) is calculated.

cα2,γ2(0) = sγ2

(
Kα2

)
,

cα2,γ2(m) = c′α2,γ2
(m)

(
1 + γ2 cα2,γ2(0)

)
, m = 1, 2, . . . ,M2

MGC2MGC Speech Signal Processing Toolkit MGC2MGC 129

In case we represent input and output with γ, if the coefficients cα,γ(m) are not normal-
ized, then the following representation is assumed

1 + γcα,γ(0), γcα,γ(1), . . . , γcα,γ(M),

if they are normalized, then the following representation is assumed

Kα, γc′α,γ(1), . . . , γc′α,γ(M).

OPTIONS

–m M1 order of mel-generalized cepstrum (input) [25]
–a A1 alpha of mel-generalized cepstrum (input) [0]
–g G1 gamma of mel-generalized cepstrum (input)

γ1 = G1

[0]

–c C1 gamma of mel-generalized cepstrum (input)
γ1 = −1/(int)C1

C1 must be C1 ≥ 1
–n regard input as normalized mel-generalized cepstrum [FALSE]
–u regard input as multiplied by gamma [FALSE]
–M M2 order of mel-generalized cepstrum (output) [25]
–A A2 alpha of mel-generalized cepstrum (output) [0]
–G G2 gamma of mel-generalized cepstrum (output)

γ2 = G2

[1]

–C C2 gamma of mel-generalized cepstrum (output)
γ2 = −1/(int)G2

C2 must be C2 ≥ 1
–N regard output as normalized mel-generalized cepstrum [FALSE]
–U regard input as multiplied by gamma [FALSE]

EXAMPLE

In the example below, 12-th order LPC coefficients are read in float format from data.lpc,
and 30-th order mel-cepstral coefficients are calculated and written to data.mcep:

mgc2mgc -m 12 -a 0 -g -1 -M 30 -A 0.31 -G 0

< data.lpc > data.mcep

SEE ALSO

uels, gcep, mcep, mgcep, gc2gc, freqt, lpc2c

130 MGC2MGCLSP Speech Signal Processing Toolkit MGC2MGCLSP

NAME

mgc2mgclsp – transform MGC to MGC-LSP

SYNOPSIS

mgc2mgclsp [–a A] [–g G] [–m M] [–o O] [–s S] [–k] [–l] [infile]

DESCRIPTION

mgc2mgc transforms mel-generalized cepstral coefficients cα,γ(0), . . . , cα,γ(M) from in-
file (or standard input) into line spectral pair coefficients (MGC-LSP) K, l(1), . . . , l(M)
sending the result to standard output.

α characterizes the frequency-warping transform, while γ characterizes the generalized
log magnitude transform and K is the gain.

mgc2mgclsp does not check for stability of the MGC-LSP. One should use the command
lspcheck to check the stability of the MGC-LSP.

OPTIONS

–a A alpha of mel-generalized cepstrum [0.35]
–g G1 gamma of mel-generalized cepstrum

γ = G
[-1]

–c C1 gamma of mel-generalized cepstrum (input)
γ = −1/(int)C
C must be C ≥ 1

–m M order of mel-generalized cepstrum [25]
–o O output format

0 normalized frequency (0 . . . π)
1 normalized frequency (0 . . . 0.5)
2 frequency (kHz)
3 frequency (Hz)

[0]

–s S sampling frequency (kHz) [10]
–k do not output gain [FALSE]
–l output log gain instead of linear gain [FALSE]

EXAMPLE

In the following example, speech data is read in float format from data.f, analyzed
with α = 0.35, γ = −1 and the MGC-LSP coefficients are evaluated and written to
data.mgclsp:

frame < data.f | window | mgcep -a 0.35 -g -1 |\

mgc2mgclsp -a 0.35 -g -1 > data.mgclsp

Also, MGC-LSP stability can be checked by using the following:

MGC2MGCLSP Speech Signal Processing Toolkit MGC2MGCLSP 131

frame < data.f | window | mgcep -a 0.35 -g -1 |\

mgc2mgclsp -a 0.35 -g -1 | lspcheck -r 0.01 > data.mgclsp

SEE ALSO

lpc, lsp2lpc, lspcheck, mgc2mgc, mgcep

132 MGC2SP Speech Signal Processing Toolkit MGC2SP

NAME

mgc2sp – transform mel-generalized cepstrum to spectrum

SYNOPSIS

mgc2sp [–a A] [–g G] [–c C] [–m M] [–n] [–u] [–l L] [–p]

[–o O] [infile]

DESCRIPTION

mgc2sp calculates the log magnitude spectrum from mel-generalized cepstral coefficients
cα,γ(m) from infile (or standard input), sending the result to standard output.

Input and output data are in float format.

The mel-generalized cepstral coefficients cα,γ(m) are transformed into cepstral coeffi-
cients (refer to mgc2mgc) and then the log magnitude spectrum is calculated (refer to
spec).

When the input data is normalized by the gain, it can be expressed as follows.

Kα = s−1
γ

(
c(0)
α,γ(0)

)
,

c′α,γ(m) = c(0)
α,γ(m)/

(
1 + γ c(0)

α,γ(0)
)
, m = 1, 2, . . . ,M

Supposing the input data is represented by γ for non-normalized coefficients cα,γ(m), the
following representation is assumed

1 + γcα,γ(0), γcα,γ(1), . . . , γcα,γ(M)

and the following representation is assumed for normalized coefficients

Kα, γc′α,γ(1), . . . , γc′α,γ(M)

OPTIONS

–a A alpha α [0]
–g G power parameter γ of mel-generalized cepstrum

γ = G
[0]

–c C power parameter γ of mel-generalized cepstrum
γ = −1/(int)C
C must be C ≥ 1

–m M order of mel-generalized cepstrum [25]
–n regard input as normalized cepstrum [FALSE]
–u regard input as multiplied by γ [FALSE]
–l L FFT length [256]

MGC2SP Speech Signal Processing Toolkit MGC2SP 133

–p output phase [FALSE]
–o O output format

if the –p option is assigned, scale of output spectrum can be
assigned.

O = 0 20 × log |H(z)|
O = 1 ln |H(z)|
O = 2 |H(z)|
O = 3 |H(z)|2

if the –p option is not assigned, unit of output phase can be
assigned.

O = 0 arg |H(z)| ÷ π [π rad.]
O = 1 arg |H(z)| [rad.]
O = 2 arg |H(z)| × 180 ÷ π [deg.]

[0]

EXAMPLE

In the following example, mel-generalized cepstral coefficients in float format are read
from data.mgcep (M = 12, α = 0.35, γ = −0.5) and the log magnitude spectrum is
evaluated and plotted:

mgc2sp -m 12 -a 0.35 -c 2 < data.mgcep | glogsp | xgr

SEE ALSO

c2sp, mgc2mgc, gc2gc, freqt, gnorm, lpc2c

134 MGCEP Speech Signal Processing Toolkit MGCEP

NAME

mgcep – mel-generalized cepstral analysis(13; 14)

SYNOPSIS

mgcep [–a A] [–g G] [–c C] [–m M] [–l L] [–q Q] [–o O]
[–i I] [–j J] [–d D] [–p P] [–e e] [–E E] [–f F] [infile]

DESCRIPTION

mgcep uses mel-generalized cepstral analysis to calculate mel-generalized cepstral coef-
ficients from L-length framed windowed input data from infile (or standard input), send-
ing the result to standard output. There are several different output formats, controlled
by the –o option.

Considering an input signal of length L, the time sequence is presented by

x(0), x(1), . . . , x(L − 1)

Input and output data are in float format.

In the mel-generalized cepstral analysis, the spectrum of the speech signal is modeled by
M-th order mel-generalized cepstral coefficients cα,γ(m) as expressed below:

H(z) = s−1
γ

 M∑
m=0

cα,γ(m)z−m

=

1 + γ M∑
m=1

cα,γ(m)z̃−m

1/γ

, −1 ≤ γ < 0

exp
M∑

m=1

cα,γ(m)z̃−m, γ = 0

For this command “mgcep”, a cost function based on the unbiased estimation log spec-
trum method is applied. The variable z̃−1 can be expressed as the following first order
all-pass function

z̃−1 =
z−1 − α

1 − αz−1

The phase characteristic is represented by the variable α. For a sampling rate 10kHz, α
is made equal to 0.35. For a sampling rate 8kHz, α is made equal to 0.31. By setting α
to these values, the mel-scale becomes a good approximation to the human sensitivity to
the loudness of speech.

The Newton-Raphson method is used to minimize the cost function when evaluating
mel-cepstral coefficients.

The mel-generalized cepstral analysis includes several other methods to analyze speech,
depending on the values of α and γ (refer to figure 1).

MGCEP Speech Signal Processing Toolkit MGCEP 135

& %

' $|α| < 1, −1 ≤ γ ≤ 0

& %

' $α = 0

& %

' $γ = −1

& %

' $γ = 0

generalized cepstral analysis

LPC analysis

unbiased estimation
of log spectrum

mel-generalized cepstral analysis

mel-LPC analysis

mel-cepstral analysis

Figure 1: mel-generalized cepstral analysis and other method relations

OPTIONS

–a A alpha α [0.35]
–g G power parameter of generalized cepstrum γ

γ = G
[0]

–c C power parameter of generalized cepstrum γ
γ = −1/(int)C
C must be C ≥ 1

–m M order of mel-generalized cepstrum [25]
–l L frame length power of 2 [256]
–q Q input data style

Q = 0 windowed data sequence
Q = 1 20 × log | f (w)|
Q = 2 ln | f (w)|
Q = 3 | f (w)|
Q = 4 | f (w)|2

[0]

136 MGCEP Speech Signal Processing Toolkit MGCEP

–o O output format

O = 0 cα,γ(0), cα,γ(1), . . . , cα,γ(M)
O = 1 bγ(0), bγ(1), . . . , bγ(M)
O = 2 Kα, c′α,γ(1), . . . , c′α,γ(M)
O = 3 K, b′γ(1), . . . , b′γ(M)
O = 4 Kα, γ c′α,γ(1), . . . , γ c′α,γ(M)
O = 5 K, γ b′γ(1), . . . , γ b′γ(M)

[0]

Usually, the options below do not need to be assigned.
–i I minimum iteration of Newton-Raphson method [2]
–j J maximum iteration of Newton-Raphson method [30]
–d D end condition of Newton-Raphson method [0.001]
–p P order of recursions [L − 1]
–e e small value added to periodogram [0]
–E E floor in db calculated per frame [N/A]
–f F mimimum value of the determinant of the normal matrix [0.000001]

EXAMPLE

In the following example, speech data is read in float format from data.f and analyzed
with γ = 0, α = 0 (which correspond to UELS method for log spectrum estimation) and
the resulting cepstral coefficients are written data.cep:

frame < data.f | window | mgcep > data.cep

In a similar way, mel-cepstral coefficients can be obtained by

frame < data.f | window | mgcep -a 0.35 > data.mcep

And linear prediction coefficients can be obtained by

frame < data.f | window | mgcep -g -1 -o 5 > data.lpc

In this case, the linear prediction coefficients are represented as

K, a(1), a(2), . . . , a(M)

In the following example, speech data in float format is read from data.f, and analyzed with
γ = 0, α = 0 (which correspond to UELS method for log spectrum estimation). The resulting
cepstral coefficients are written to data.cep:

frame < data.f | window | \

fftr -A -H | mgcep -q 3 > data.cep

SEE ALSO

uels, gcep, mcep, freqt, gc2gc, mgc2mgc, gnorm, mglsadf

MGCLSP2MGC Speech Signal Processing Toolkit MGCLSP2MGC 137

NAME

mgclsp2mgc – transform MGC-LSP to MGC

SYNOPSIS

mgclsp2mgc [–a A] [–g G] [–m M] [–i I] [–s S] [–l] [infile]

DESCRIPTION

mgclsp2mgc transforms M-th order line spectral pair coefficients (MGC-LSPs)

K, l(1), . . . , l(M)

read from infile (or standard input) into mel-generalized cepstrum coefficients

cα,γ(0), . . . , cα,γ(M), a

sending the result to standard output.

α characterizes the frequency-warping transform, while γ characterizes the generalized
log magnitude transform and K represents the gain.

Also, mgclsp2mgc does not check the stability of MGC-LSPs. If it is necessary to use the
lspcheck command for checking the stability of the input MGC-LSPs and then generating
the mel-generalized cepstrum coefficients.

OPTIONS

–a A alpha of mel-generalized cepstrum [0.35]
–g G1 gamma of mel-generalized cepstrum

γ = G
[-1]

–c C1 gamma of mel-generalized cepstrum (input)
γ = −1/(int)C
C must be C ≥ 1

–m M order of mel-generalized cepstrum [25]
–i I input format

0 normalized frequency (0 . . . π)
1 normalized frequency (0 . . . 0.5)
2 frequency (kHz)
3 frequency (Hz)

[0]

–s S sampling frequency (kHz) [10]
–l regard input as log gain and output linear gain [FALSE]

EXAMPLE

In the following example, MGC-LSP is read in float format from data.mgclsp, and an-
alyzed with α = 0.35, γ = −1. The mel-generalized cepstrum coefficients are evaluated
and written to data.mgc:

138 MGCLSP2MGC Speech Signal Processing Toolkit MGCLSP2MGC

mgclsp2mgc -a 0.35 -g -1 data.mgclsp > data.mgc

Also, stability of MGC-LSP’s can be checked using the following command:

lspcheck -r 0.01 data.mgclsp | \

mgclsp2mgc -a 0.35 -g -1 > data.mgc

SEE ALSO

lpc, lsp2lpc, lspcheck, mgc2mgc, mgcep

MGLSADF Speech Signal Processing Toolkit MGLSADF 139

NAME

mglsadf – MGLSA digital filter for speech synthesis(21; 22)

SYNOPSIS

mglsadf [–m M] [–a A] [–c C] [–p P] [–i I] [–v] [–t] [–k] [–P Pa]
mgcfile [infile]

DESCRIPTION

mglsadf derives a Mel-Generalized Log Spectral Approximation digital filter from mel-
generalized cepstral coefficients cα,γ(m) in mgcfile and uses it to filter an excitation se-
quence from infile (or standard input) to synthesize speech data, sending the result to
standard output.

Input and output data are in float format.

The transfer function H(z) related to the synthesis filter is obtained from the M-th order
mel-generalized cepstral coefficients cα,γ(m) as expressed below:

H(z) = s−1
γ

 M∑
m=0

cα,γ(m)z̃−m

 (1)

=

1 + γ M∑
m=0

cα,γ(m)z̃−m

1/γ

, 0 < γ ≤ −1

exp
M∑

m=0

cα,γ(m)z̃−m, γ = 0

where

z̃−1 =
z−1 − α

1 − αz−1

The transfer function H(z) can be rewritten as

H(z) = s−1
γ

 M∑
m=0

b′γ(m)Φm(z)

= K · D(z) (2)

where

Φm(z) =

1, m = 0
(1 − α2)z−1

1 − αz−1 z̃−(m−1), m ≥ 1

and

K = s−1
γ (bγ(0))

D(z) = s−1
γ

 M∑
m=1

bγ(m)Φm(z)

140 MGLSADF Speech Signal Processing Toolkit MGLSADF

-+fInput
��
HH -+f1 − α2

6
Output

z−1 rHH
��

?

α

z−1 -+f z−1 -+f z−1 -r
AA��

?
+f

b′γ(1)

r
AA��

?
+f

b′γ(2)

r
AA��

?
+f

b′γ(3)

+f
AA��

?
α

+f
AA��

?
α�

�
�

���
−

�
�

�
���
−

�
�

�
���
−

r@
@

@
@@I

r@
@

@
@@I

�����
HH

6

γ

−

(a) Structure of filter 1/B(z)

1
B(z̃)

1
B(z̃)

1
B(z̃)

- -. . .
Input Output

1st stage 2nd stage Cth stage

(b) C level cascaded filter 1/B(z)

Figure 1: Realization synthesis filter D(z)

Also, the coefficients b′γ(m) are obtained from the coefficients cα,γ(m) by applying nor-
malization (refer to gnorm), and a linear transformation (refer to mc2b and b2mc). Here
we consider only cases where the power parameter is represented by γ = −1/C, where
C is a natural number. In this case the filter D(z) is constructed as shown in figure (b),
where each filter of the C level cascaded filter is constructed as shown in figure (a), and
can be expressed as

1
B(z̃)

=
1

1 + γ
M∑

m=1

b′γ(m)Φm(z)

MGLSADF Speech Signal Processing Toolkit MGLSADF 141

OPTIONS

–m M order of mel-generalized cepstrum [25]
–a A alpha [0.35]
–c C power parameter γ = −1/C of generalized cepstrum

if C == 0, the MLSA filter is used
[1]

–p P frame period [100]
–i I interpolation period [1]
–v inverse filter [FALSE]
–t transpose filter [FALSE]
–k filtering without gain [FALSE]

The option below only works if C == 0.
–P Pa order of the Padé approximation

Pa should be 4 or 5
[4]

EXAMPLE

In the following example, the excitation is constructed from pitch data read in float for-
mat from data.pitch, and passed through an MGLSA filter built from the mel-generalized
cepstrum in data.mgcep. The synthesized speech is then written to data.syn:

excite < data.pitch | mglsadf data.mgcep > data.syn

SEE ALSO

mgcep, poledf, zerodf, ltcdf, lmadf, mlsadf, glsadf

142 MINMAX Speech Signal Processing Toolkit MINMAX

NAME

minmax – find minimum and maximum values

SYNOPSIS

minmax [–l L] [–n N] [–b B] [–o O] [–d] [infile]

DESCRIPTION

minmax determines the B (default 1) minimum and maximum values, on a frame-by-
frame basis, of the data from infile (or standard input), sending the result to standard
output. If the frame length L is 1, each input number is considered to be both the mini-
mum and maximum value for its length-1 frame.

The input format is float by default. If the –d option is not given, the output format
will also be float, consisting of the minimum and maximum values. If the –d option is
given, the output format will be ASCII, showing the positions within the frame where
the minimum and maximum values occurred, as follows:

value : position0, position1, . . .

Also, when specifying –o 0, –o 1, and –o 2, minmax output minimum and maximum
values, only minimum values, and only maximum values, respectively.

OPTIONS

–l L length of vector [1]
–n N order of vector [L-1]
–b B find n-best values [1]
–o O output format

O = 0 minimum and maximum
O = 1 minimum
O = 2 maximum

[0]

–d output data number [FALSE]

EXAMPLE

If, for example, the input data in data.f in float format is given as

1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 10

then the output of the following command

minmax data.f -l 6 > data.m

MINMAX Speech Signal Processing Toolkit MINMAX 143

is written to data.m as
1, 5, 6, 10

Also, if the following command is applied

minmax -n 2 -d data.f

then the result will be

1:0

2:2

3:0

5:2

6:0

8:2

9:0,1

10:2

144 MLPG Speech Signal Processing Toolkit MLPG

NAME

mlpg – obtains parameter sequence from PDF sequence(23)

SYNOPSIS

mlpg [–l L] [–m M] [–d (f n | d0 [d1 . . .])] [–r NR W1 [W2]]
[–i I] [–s S] [infile]

DESCRIPTION

mlpg calculates the maximum likelihood parameters from the means and diagonal co-
variances of Gaussian distributions from infile (or standard input), and sends the result
to standard output. The input format is

. . . , µt(0), . . . , µt(M), µ(1)
t (0), . . . , µ(1)

t (M), . . . , µ(N)
t (M),

σ2
t (0), . . . , σ2

t (M), σ(1)2
t (0), . . . , σ(1)2

t (M), . . . , σ(N)2
t (M), . . .

Input and output data are in float format.

The speech parameter vector ot for every frame t is composed of the static feature vector
ct, where

ct = [ct(0), ct(1), . . . , ct(M)]>

and the dynamic feature vector ∆(1)ct, . . . ,∆
(N)ct . Thus, the speech parameter vector

can be expressed as:
ot = [c′t ,∆

(1)c′t , . . . ,∆
(N)c′t]

>.

The dynamic feature vector ∆(n)ct is obtained from the static feature vector as follows.

∆(n)ct =

L(n)∑
τ=−L(n)

w(n)(τ)ct+τ

where n represents the order of dynamic feature vector. (e.g. n = 2 for ∆2) The mlpg
command reads the probability density functions sequence

((µ1,Σ1), (µ2,Σ2), . . . , (µT ,ΣT)) ,

where

µt =
[
µ′(0)

t ,µ
′(1)
t , . . . ,µ

′(N)
t

]>
Σt = diag

[
Σ

(0)
t ,Σ

(1)
t , . . . ,Σ

(1)
t

]
and evaluates the maximum likelihood parameter sequence (o1, o2, . . . , oT). The out-
put is the static feature vector sequence ct = (c1, c2, . . . , cT). In the example above,
µ(0),Σ(0) represent the static feature vector mean and covariance matrix, respectively,
and µ(n),Σ(n) represent the n-th order dynamic feature vector mean and covariance ma-
trix, respectively.

MLPG Speech Signal Processing Toolkit MLPG 145

OPTIONS

–m M order of vector [25]
–l L length of vector [M + 1]
–d (f n | d0 [d1 . . .]) f n is the file name of the parameters w(n)(τ) used

when evaluating the dynamic feature vector. It is
assumed that the number of coefficients to the left
and to the right have the same length. If this is not
true, then zeros are added to the short side. For
example, if the coefficients are

w(−1),w(0),w(1),w(2),w(3)

then zeros are added to the left as follows.

0, 0,w(−1),w(0),w(1),w(2),w(3)

Instead of entering the filename f n, the coeffi-
cients(which compose the file f n) can be directly
input in the command line. When the order of the
dynamic feature vector is higher than one, the sets
of coefficients can be input one after the other as
shown on the last example below. This option can-
not be used with the –r option.

[N/A]

–r NR W1 [W2] This option is used when NR-th order dynamic pa-
rameters are used and the weighting coefficients
w(n)(τ) are evaluated by regression. NR can be set
to 1 or 2. The variables W1 and W2 represent the
widths of the first and second order regression co-
efficients, respectively. The first order regression
coefficients for ∆ct at frame t are evaluated as fol-
lows.

∆ct =

∑W1
τ=−W1

τct+τ∑W1
τ=−W1

τ2

For the second order regression coefficients, a2 =∑W2
τ=−W2

τ4, a1 =
∑W2
τ=−W2

τ2, a0 =
∑W2
τ=−W2

1 and

∆2ct =

∑W2
τ=−W2

(a0τ
2 − a1)ct+τ

2(a2a0 − a2
1)

This option can not be used with the –d option.

[N/A]

146 MLPG Speech Signal Processing Toolkit MLPG

–i I type of input PDFs

I = 0 µ, Σ

I = 1 µ, Σ−1

I = 2 µΣ−1, Σ−1

[0]

–s S range of influenced frames [30]

EXAMPLE

In the example below, the number of parameters is 15, the width of the window for first
or second order dynamic feature evaluation is 1, and the parameter sequence is evaluated
from the probability density function:

mlpg -m 15 -r 2 1 1 data.pdf > data.par

or

echo "-0.5 0 0.5" | x2x +af > delta

echo "0.25 -0.5 0.25" | x2x +af > accel

mlpg -m 15 -d delta -d accel data.pdf > data.par

MLSACHECK Speech Signal Processing Toolkit MLSACHECK 147

NAME

mlsacheck – check stability of MLSA filter

SYNOPSIS

mlsacheck [–m M] [–a A] [–r] [–R] [–P Pa] [infile]

DESCRIPTION

mlsacheck tests the stability of the Mel Log Spectral Approximation (MLSA) digital
filter of the mel-cepstrum coefficients in infile (or standard input), sending the result to
standard output.

Both input and output are in float format.

As described in mlsadf, the transfer function H(z) is expressed as

H(z) = exp
M∑

m=0

b(m)Φm(z)

= K · D(z)

where

Φm(z) =

1, m = 0
(1 − α2)z−1

1 − αz−1 z̃−(m−1), m ≥ 1

and

z̃−1 =
z−1 − α
1 − αz−1 ,

K = exp b(0),

D(z) = exp
M∑

m=1

b(m)Φm(z).

To construct the exponential transfer function H(z), Padé approximation is used to ap-
proximate complex exponential function exp w by a following rational function:

exp w ' RL(w) =
1 +

∑L
l=1 AL,lwl

1 +
∑L

l=1 AL,l(−w)l

Then D(z) is approximated by

D(z) = exp(F(z)) ' RL(F(z))

where

F(z) =
M∑

m=0

b(m)z̃−m.

148 MLSACHECK Speech Signal Processing Toolkit MLSACHECK

The stability of the MLSA synthesis filter is related to the accuracy of the approximation.
When |F(e jω)| < r = 4.5 and L = 4 for RL(w), the log approximation error does not
exceed 0.24 dB. The corresponding synthesis filter RL(F(z)) ' exp(F(z)) = D(z) is
stable when |F(e jω)| < rmax = 6.2. Also, the log approximation error does not exceed
0.2735 dB when r = 6.0 and L = 5. The corresponding synthesis filter is stable when
rmax = 7.65.

In spite of whether specifying –c option or not, mlsacheck tests the stability and sends
an ASCII report of the number of unstable frame to standard error. When specifying –c
option, mlsacheck modifies the filter coefficients if unstable frame is found. When spec-
ifying –r option, the stable condition can be selected as follows: When ’–r 0’, mlsacheck
keeps the log approximation not exceeding 0.24 dB (Pa = 4) or 0.2735 dB (Pa = 5),
where Pa is the order of Padé approximation. When ’–r 1’, mlsacheck keeps the MLSA
filter stable although the accuracy of log approximation is lost.

OPTIONS

–m M order of mel-cepstrum [25]
–a A all-pass constant α [0.35]
–l L FFT length [256]
–c modify MLSA filter coefficients of unstable frames [N/A]
–r R stable condition for MLSA filter

R = 0 keep log approximation error not exceeding
0.24 dB (Pa = 4) or 0.2735 dB (Pa = 5)

R = 1 keep MLSA filter stable

[0]

–P Pa order of the Padé approximation
Pa should be 4 or 5

[4]

EXAMPLE

In the following example, 25-th order mel-cepstrum coefficients are read from data.mcep
in float format, then the stability of MLSA filter is checked, and the results are written to
data.mlsachk.

mlsacheck -m 25 -c data.mcep > data.mlsachk

SEE ALSO

mcep, amcep, poledf, zerodf, ltcdf, lmadf, glsadf, mglsadf

MLSADF Speech Signal Processing Toolkit MLSADF 149

NAME

mlsadf – MLSA digital filter for speech synthesis(19; 20; 12)

SYNOPSIS

mlsadf [–m M] [–a A] [–p P] [–i I] [–b] [–P Pa] [–v] [–t] [–k]
mcfile [infile]

DESCRIPTION

mlsadf derives a Mel Log Spectral Approximation digital filter from mel-cepstral coef-
ficients cα(0), cα(1), . . . , cα(M) in mcfile and uses it to filter an excitation sequence from
infile (or standard input) and synthesize speech data, sending the result to standard out-
put.

Input and output data are in float format.

The exponential transfer function H(z) related to the MLSA synthesis filter is obtained
from the M-th order mel-cepstral coefficients cα(m) as follows.

H(z) = exp
M∑

m=0

cα(m)z̃−m

where

z̃−1 =
z−1 − α

1 − αz−1 .

The highly accurate approximation method of the above transfer function is explained
below. First, the transfer function H(z) is expressed as

H(z) = exp
M∑

m=0

b(m)Φm(z)

= K · D(z)

where,

Φm(z) =

1, m = 0
(1 − α2)z−1

1 − αz−1 z̃−(m−1), m ≥ 1

and

K = exp b(0)

D(z) = exp
M∑

m=1

b(m)Φm(z)

Therefore, the coefficients b(m) can be obtained through a linear transformation of cα(m)
(refer to mc2b and b2mc).

150 MLSADF Speech Signal Processing Toolkit MLSADF

��
QQ

1 − α2 QQ
��α JJ

α JJ

α

JJ

b(1) JJ

b(2) JJ

b(3)

z−1 z−1 z−1 z−1

Input

- h+? r r - h+ q - h+r r�
�

�
���

? @
@

@
@@I

h+−
�

�
�

���

? @
@

@
@@I

h+−
�

�
�

���

-r

- ? -h+ ? -h+ Output

(a) Basic filter F(z)

F(z) F(z) F(z) F(z)r r r
JJ JJ JJ JJ

h+-
Input r

- h+ -
Output

A4,1 A4,2 A4,3 A4,4
− −

r r r r
��7��� CCO SSo

��7��� CCO SSo

(b) RL(F(z)) ' D(z) L = 4

R4(F1(z)) R4(F2(z))- - -
x(n) e(n)

(c) Two-stage cascade structure
R4(F1(z)) · R4(F2(z)) ' D(z)

Figure 1: Realization of exponential transfer function 1/D(z)

The filter D(z) can be constructed as shown in figure 1(b), where basic filter (figure 1(a))
is the following IIR filter.

F(z) =
M∑

m=1

b(m)Φm(z)

If we want to improve the accuracy of the approximation, we can decompose the basic
filter as shown in figure 1(c),

F(z) = F1(z) + F2(z)

MLSADF Speech Signal Processing Toolkit MLSADF 151

where

F1(z) = b(1)z−1

F2(z) =
M∑

m=2

b(m)Φm(z)

Also, the coefficients A4,l in figure 1(b) have same value as the LMA filter (refer to
lmadf).

OPTIONS

–m M order of mel-cepstrum [25]
–a A all-pass constant α [0.35]
–p P frame period [100]
–i I interpolation period [1]
–b output filter coefficient b(m) (coefficients which are linear

transformed from mel-cepstrum)
[FALSE]

–P Pa order of the Padé approximation
Pa should be 4 or 5

[4]

–k filtering without gain [FALSE]
–v inverse filter [FALSE]
–t transpose filter [FALSE]

EXAMPLE

In the following example, the excitation is constructed from pitch data read in float for-
mat from data.pitch, passed through an MLSA filter built from the mel-cepstrum in
data.mcep, and the synthesized speech is written to data.syn:

excite < data.pitch | mlsadf data.mcep > data.syn

SEE ALSO

mcep, amcep, poledf, zerodf, ltcdf, lmadf, glsadf, mglsadf

152 MSVQ Speech Signal Processing Toolkit MSVQ

NAME

msvq – multi stage vector quantization

SYNOPSIS

msvq [–l L] [–n N][–s S cbfile] [–q] [infile]

DESCRIPTION

msvq encodes the data from infile (or standard input) using multi-stage vector quanti-
zation with codebooks specified by multiple –s options, sending the result to standard
output.

Input data is in float format and output data is in int format.

OPTIONS

–l L length of vector [26]
–n N order of vector [L − 1]
–s S cb f ile codebook

S codebook size
cb f ile codebook file

[N/A N/A]

–q output quantized vector [FALSE]

EXAMPLE

In the example below, a two level vq is undertaken in input data.f file. the codebook
sizes of cbfile1 and cbfile2 are 256 and the output is written to data.vq:

msvq -s 256 cbfile1 -s 256 cbfile2 < data.f > data.vq

SEE ALSO

imsvq, vq, ivq, lbg

NAN Speech Signal Processing Toolkit NAN 153

NAME

nan – data check

SYNOPSIS

nan [infile]

DESCRIPTION

nan checks whether input data contains NaN (Not a Number) or Infinity, showing the
positions where these values occurred.

EXAMPLE

This example reads input data data.f in float format and checks it:

nan data.f

154 NORM0 Speech Signal Processing Toolkit NORM0

NAME

norm0 – normalize coefficients

SYNOPSIS

norm0 [–m M] [infile]

DESCRIPTION

norm0 normalizes vectors from infile (or standard input) by dividing vector components
by the zero-order component, sending the result to standard output.

For the input sequence
x(0), x(1), . . . , x(M),

the normalized output sequence is

1/x(0), x(1)/x(0), . . . , x(M)/x(0).

Input and output data are in float format.

OPTIONS

–m M order of input data [25]

EXAMPLE

Speech data is read from data.f in float format, the 15-th order autocorrelation coeffi-
cients are evaluated and normalized, and the results is written to data.nacorr:

frame < data.f | window | acorr -m 15 |\

norm0 -m 15 > data.nacorr

SEE ALSO

linear intpl

NRAND Speech Signal Processing Toolkit NRAND 155

NAME

nrand – generate normal distributed random value

SYNOPSIS

nrand [–l L] [–s S] [–m M] [–v V] [–d D]

DESCRIPTION

nrand generates a sequence of normally-distributed random values, sending the result to
standard output.

Output data is in float format.

OPTIONS

–l L output length
In the case L ≤ 0 then random values will be generated indefinitely.

[256]

–s S seed for nrand [1]
–m M mean of normal distribution [0.0]
–v V variance of normal distribution [1.0]
–d D standard deviation of normal distribution [1.0]

EXAMPLE

Normal distributed random values of length 100 are generated and written to data.rnd:

nrand -l 100 -s 3 > data.rnd

156 PAR2LPC Speech Signal Processing Toolkit PAR2LPC

NAME

par2lpc – transform PARCOR to LPC

SYNOPSIS

par2lpc [–m M] [infile]

DESCRIPTION

par2lpc calculates linear prediction (LPC) coefficients from M-th order PARCOR coef-
ficients from infile (or standard input), sending the result to standard output.

The PARCOR input format is
K, k(1), . . . , k(M),

and the LPC output format is
K, a(1), . . . , a(M).

Input and output data are in float format.

The Durbin algorithm is used for the transformation of PARCOR coefficients into linear
prediction coefficients as follows;

a(m)(m) = k(m)

a(m)(i) = a(m−1)(i) + k(m)a(m−1)(m − i), 1 ≤ i ≤ m

where m = 1, 2, . . . , p. The initial condition is

a(M)(m) = a(m), 1 ≤ m ≤ M.

OPTIONS

–m M order of LPC [25]

EXAMPLE

PARCOR coefficients are read in float format from data.rc and converted into the corre-
sponding linear prediction coefficients. The output is written to data.lpc:

par2lpc < data.rc > data.lpc

SEE ALSO

acorr, levdur, lpc, lpc2par

PCA Speech Signal Processing Toolkit PCA 157

NAME

pca – principal component analysis

SYNOPSIS

pca [–l L] [–n N] [–i I] [–e e] [–v] [–V f n] [infile]

DESCRIPTION

pca applies principal component analysis in the data from infile (or standard input) us-
ing the Jacobi method, and sends the result to standard output. pca can also calculate
contribution ratio with the eigen values.

In infile, the input training data set consists of L-dimension vectors of the form:

x(0), x(1), x(2), x(3), · · · where x(i) = (xi(1), xi(2), · · · , xi(L))

Input and output data are in float format.

OPTIONS

–l L dimension of vector [3]
–n N number of output principal components [2]
–i I limit of iterations of the Jacobi method [10000]
–e e threshold of convergence of the Jacobi method [0.000001]
–v output eigenvectors and mean vector of the training data [FALSE]
–V f n output eigenvalues and contribution rate (output filename =

fn)
[FALSE]

EXAMPLE

In the example below, the eigenvectors and the eigenvalues are calculated from data.f
which contains three-dimensional training vectors. The mean vectors and eigenvectors
are sent to pca.dat, and the eigenvalues are sent to eigen.dat.

pca data.f -n 2 -l 3 -v -V eigen.dat > pca.dat

Note that in the pca.dat, the mean vector is written in front of the eigenvectors. In the
eigen.dat, the eigenvalues and their contribution ratio are bound by the same principal
component and ordered according to the magnitude of the eigen values.

SEE ALSO

pcas

158 PCAS Speech Signal Processing Toolkit PCAS

NAME

pcas – calculate principal component scores

SYNOPSIS

pcas [–l L] [–n N] pcafile [infile]

DESCRIPTION

pcas calculates principal component scores from the data in infile (or standard input) ,
and sends the result to standard output.

The input data set must be composed of an L-dimension, mean vector m and eigenvectors
e(i) as in:

m, e(0), e(1), e(2), · · ·
where m = (m(1),m(2), · · · ,m(L)) and e(i) = (ei(1), ei(2), · · · , ei(L))

Input and output data are in float format.

OPTIONS

–l L dimensionality of vector [3]
–n N output number of principal components [2]

EXAMPLE

In the example below, the principal component scores are calculated from test.dat and
sent to score.dat. Here, pca.dat is a file that contains the mean and eigenvectors.

pcas pca.dat -l 3 -n 2 < test.dat > score.dat

In pca.dat, the mean vector must be written before the eigenvectors.

SEE ALSO

pca

PHASE Speech Signal Processing Toolkit PHASE 159

NAME

phase – transform real sequence to phase

SYNOPSIS

phase [–l L] [–p pfile] [–z zfile] [–m M] [–n N] [infile]

DESCRIPTION

phase calculates the phase of the spectrum of a real sequence from infile (or standard
input), and sends the result to standard output. Assume that the input sequence is

x(0), x(1), . . . , x(L − 1)

and the FFT is

Xk = X(e jω)

∣∣∣∣∣∣ ω = 2πk
L

=

L−1∑
m=0

x(m)e− jωm

∣∣∣∣∣∣ ω = 2π k
L
, k = 0, 1, . . . , L − 1

Then the output is given by

Yk = arg Xk, k = 0, 1, . . . , L/2

In this case the phase is written in continuous form. The output data angular frequency
varies from 0 ∼ π. Input and output data are in float format.

If the –p, –z options are assigned then the phase of the corresponding filter related to the
assigned coefficients is calculated 1.

OPTIONS

–l L frame length power of 2 [256]
–p p f ile numerator coefficients file

The pfile should follow this structure in float format:
K, a(1), . . . , a(M)

[NULL]

–z z f ile denominator coefficients file
The zfile should follow this structure in float format:

b(0), b(1), . . . , b(N)
The contents of pfile and zfile should be in a similar form
to that used in the dfs command. When only the –p option
is assigned then the denominator is made equal to 1. When
only the –z option is assigned, the numerator and the gain K
are both set to 1. If neither –p nor –z are assigned, data is
read from the standard input.

[NULL]

1 In this case the phase is not evaluated from the filter impulse response, but from the difference between the
numerator and denominator phases

160 PHASE Speech Signal Processing Toolkit PHASE

–m M order of polynomial denominator
If the number of input data values is less M + 1, then M is
set to the number of input data values −1. On the other hand,
There is no need to assign a values to M if one doesn’t want
the data to be analyzed is blocks of M + 1 size.

[L − 1]

–n N order of polynomial numerator
Likewise the –m option, if the number of input data values
is less then N + 1, then N is set to the number of input data
values −1. On the other hand, There is no need to assign a
values to N if one doesn’t want the data to be analyzed is
blocks of N + 1 size.

[L − 1]

–u unwrapping [TRUE]

EXAMPLE

In the example below, the phase characteristic of a digital filter with coefficients assigned
by the files data.p, data.z in float format can be displayed by:

phase -p data.p -z data.z | fdrw | xgr

If the filter defined by data.p, data.z is stable then the following command will give a
similar result:

impulse | dfs -p data.p -z data.z | phase | fdrw | xgr

SEE ALSO

spec, fft, fftr, dfs

BUGS

If the sample interval between FFT points is large (the value assigned by the –l option
is small), or if the phase characteristic includes steep angles (i.e. zeros and/or poles are
close to the unit circle in the z domain), it might happen that the phase is not properly
drawn in continuous form.

PITCH Speech Signal Processing Toolkit PITCH 161

NAME

pitch – pitch extraction

SYNOPSIS

pitch [–a A] [–s S] [–p P] [–T T] [–t t] [–L Lo] [–H Hi] [–o O][infile]

DESCRIPTION

pitch extracts the pitch values from infile (or standard input), sending the result to stan-
dard output. The RAPT (24) and SWIPE’ (25) algorithm are adopted for pitch extrac-
tion. They can be specified by –a option. The output format (pitch, F0 or log(F0)) can
be specified by –o option.

Both input and output files are in float format.

OPTIONS

–a A algorithm used for extraction of pitch

A = 0 RAPT
A = 1 SWIPE’

[0]

–s S sampling frequency (kHz) [16.0]
–p P frame shift [80]
–T T voiced/unvoiced threshold (used only for RAPT algorithm) [0.0]
–t t voiced/unvoiced threshold (used only for SWIPE’ algorithm) [0.3]
–L Lo minimum fundamental frequency to search for (Hz) [60.0]
–H Hi maximum fundamental frequency to search for (Hz) [240.0]
–o O output format

O = 0 pitch
O = 1 F0
O = 2 log(F0)

[0]

EXAMPLE

In the example below, speech data in float format is read from data.f and the pitch data is
extracted via SWIPE’ algorithm under the condition that sampling frequency is 16kHz,
the frame shift is 80 point, and the minimum and maximum fundamental frequency are
80 and 165 Hz, respectively. Then, the output is written to data.pitch:

pitch -a 1 -s 16 -p 80 -L 80 -H 165 data.f > data.pitch

SEE ALSO

excite

162 POLEDF Speech Signal Processing Toolkit POLEDF

NAME

poledf – all pole digital filter for speech synthesis

SYNOPSIS

poledf [–m M] [–p P] [–i I] [–t] [–k] afile [infile]

DESCRIPTION

poledf derives an all pole standard form digital filter from the linear prediction (LPC)
coefficients K, a(1), . . . , a(M) in afile and uses it to filter an excitation sequence from
infile (or standard input) to synthesize speech data, sending the result to standard output.

Input and output data are in float format.

The transfer function H(z) of an all pole standard form filter is

H(z) =
K

1 +
M∑

m=1

a(m)z−m

OPTIONS

–m M order of coefficients [25]
–p P frame period [100]
–i I interpolation period [1]
–t transpose filter [FALSE]
–k filtering without gain [FALSE]

EXAMPLE

In the example below, the excitation is generated from the pitch information read from
data.pitch in float format. It is then passed through the standard form synthesis filter
built from the linear prediction coefficients file data.lpc, and the synthesized speech is
output to data.syn:

excite < data.pitch | poledf data.lpc > data.syn

SEE ALSO

lpc, acorr, ltcdf, lmadf, zerodf

PSGR Speech Signal Processing Toolkit PSGR 163

NAME

psgr – XY-plotter simulator for EPSF

SYNOPSIS

psgr [–t title] [–s S] [–c C] [–x X] [–y Y] [–p P] [–r R] [–b]

[–T T] [–B B] [–L L] [–R R] [–P] [infile]

DESCRIPTION

psgr converts FP5301 plotter commands from infile (or standard input) to PostScript
(EPSF or PS), sending the result to standard output.

OPTIONS

–t title title of figure [NULL]
–s S shrink [1.0]
–c C number of copy [1]
–x X x offset (mm) [0]
–y Y y offset (mm) [0]
–p P paper (Letter, A0, A1, A2, A3, A4, A5, B0, B1, B2, B3, B4,

B5)
[FALSE]

–l landscape [FALSE]
–r R resolution (dpi) [600]
–b bold font mode [FALSE]
–T T top margin (mm) [0]
–B B bottom margin (mm) [0]
–L L left margin (mm) [0]
–R R right margin (mm) [0]
–P output Postscript code [FALSE]

EXAMPLE

This example/command creates the figure file data.fig and sends it to a printer.

fig data.fig | psgr | lpr

BUGS

•It may happen that a part of the Y axis label is not properly output. This problem
can be solved by altering the margins.

•When the size of the figure is modified, and included in a TEXfile, it may not be
displayed correctly. To solve this problem, please use TEXoptions for including
pictures and adjusting sizes.

164 PSGR Speech Signal Processing Toolkit PSGR

SEE ALSO

fig, fdrw, xgr

RAMP Speech Signal Processing Toolkit RAMP 165

NAME

ramp – generate ramp sequence

SYNOPSIS

ramp [–l L] [–n N] [–s S] [–e E] [–t T]

DESCRIPTION

ramp generates ramp sequences of length L, sending the result to standard output. The
output is as follows.

S , S + T, S + 2T, . . . , S + (L − 1)T︸ ︷︷ ︸
L

Output format is in float format. In the case the last value is assigned the generated
sequence is,

S , S + T, S + 2T, . . . , E︸ ︷︷ ︸
(E−S)/T

If the –l , –e and –n options are used at the same time, only the last option is taken into
account.

OPTIONS

–l L length of ramp sequence
If L ≤ 0 ramp values will be generated indefinitely.

[256]

–n N order of ramp sequence [L-1]
–s S start value [0]
–e E end value [N/A]
–t T step size [1]

EXAMPLE

The command below outputs the following sequence:

y(n) = exp(−n)

ramp | sopr -m -1 -E | dmp +f

SEE ALSO

impulse, step, train, sin

166 RAW2WAV Speech Signal Processing Toolkit RAW2WAV

NAME

raw2wav – raw to wav (RIFF)

SYNOPSIS

raw2wav [–swab][–s S] [–d D] [–n] [–N] [+type] [infile]

DESCRIPTION

raw2wav converts file format from raw to wav.

OPTIONS

–swab change endian [FALSE]
–s S sampling frequency [16000]
–d D destination directory [N/A]
–n normalization with the maximum value

if max >= 32767
[FALSE]

–N normalization [FALSE]
+type1 input data type [s]
+type2 output data type

c char (1 byte) C unsigned char (1 byte)
s short (2 bytes) S unsigned short (2 bytes)
i3 int (3 bytes) I3 unsigned int (3 bytes)
i int (4 bytes) I unsigned int (4 bytes)
l long (4 bytes) L unsigned long (4 bytes)
le long long (8 bytes) LE unsigned long long (8 bytes)
f float (4 bytes) d double (8 bytes)

[s]

EXAMPLE

In the following command, the file file.raw, in raw format is converted to the wav format
file data.wav and saved to the same directory of the input file. Here, the –s option spec-
ifies the sampling frequency of the input file. One can also specify a different directory
for the output file by using the –d option.

raw2wav -s 8000 data.raw

SEE ALSO

swab, minmax

REVERSE Speech Signal Processing Toolkit REVERSE 167

NAME

reverse – reverse the order of data in each block

SYNOPSIS

reverse [–l L] [–n N] [infile]

DESCRIPTION

reverse reverses the order of data within L-length blocks of input data from infile (or
standard input), and sends the result to standard output. The default value for L is the
entire file. If L is given but the file length is not a multiple of L, leftover values are
discarded as shown in the example below.

OPTIONS

–l L length of block [EOF]
–n N order of block [EOF-1]

EXAMPLE

Let’s assume that the following data is read from data.in file in float format.

0.0, 1.0, 2.0︸ ︷︷ ︸, 3.0, 4.0, 5.0︸ ︷︷ ︸, 6.0, 7.0, 8.0︸ ︷︷ ︸, 9.0

The command

reverse -l 3 data.in > data.out

will write the following output to data.out.

2.0, 1.0, 0.0︸ ︷︷ ︸, 5.0, 4.0, 3.0︸ ︷︷ ︸, 8.0, 7.0, 6.0︸ ︷︷ ︸

168 RMSE Speech Signal Processing Toolkit RMSE

NAME

rmse – calculation of root mean squared error

SYNOPSIS

rmse [–l L] file1 [infile]

DESCRIPTION

rmse calculates RMSE (Root Mean Square Error) of input data sequences from infile (or
standard input) and file1, sending the results to standard output.

If two files are given, the L-length time series

x1(0), x1(1), . . . , x1(L − 1)︸ ︷︷ ︸, x2(0), x2(1), . . .︸ ︷︷ ︸
and

y1(0), y1(1), . . . , y1(L − 1)︸ ︷︷ ︸, y2(0), y2(1), . . .︸ ︷︷ ︸
are read, and the RMSE of these two series are calculated and output. The RMSE is
given by:

RMSE j =

√√
L−1∑
m=0

(x j(m) − y j(m))2/L

Input and output data are in float format.

OPTIONS

–l L data length to calculate RMSE.
If L = 0, RMSE of whole input data is output.

[0]

EXAMPLE

This example calculates the RMSE of input data files data.f1 and data.f2, and outputs its
maximum and minimum values:

rmse -l 26 data.f1 data.f2 | minmax | dmp +f

SEE ALSO

histogram, minmax

ROOT POL Speech Signal Processing Toolkit ROOT POL 169

NAME

root pol – calculate roots of a polynomial equation

SYNOPSIS

root pol [–m M] [–n N] [–e E] [–i] [–s] [–r] [infile]

DESCRIPTION

root pol finds root values of a polynomial equation from infile (or standard input), and
sends the result to standard output.

For a given input file, the coefficients

a0, a1, . . . , an

of an n-th order polynomial equation of the form:

P(x) = a0xn + a1xn−1 + · · · + an−1x + an,

are first read from the file and then the roots of the polynomial are calculated by the
Durand-Kerner-Aberth method.

If roots of P(x) are zi, the result is sent to standard output in complex form as

Re[z0], Im[z0]
Re[z1], Im[z1]
...

Re[zn−1], Im[zn−1]

or polar form as
|z0|, arg[z0]
|z1|, arg[z1]
...
|zn−1|, arg[zn−1]

Both input and output data are in float format.

OPTIONS

–m M order of polynomial equation [32]
–n N maximum iteration to search roots [1000]
–e E error margin for roots ε [10−14]
–i set a0 = 1 [FALSE]
–s reverse order of coefficients [FALSE]
–r output results in polar form [complex form]

170 ROOT POL Speech Signal Processing Toolkit ROOT POL

EXAMPLE

The following command calculates roots of the polynomial equation specified in the file
data.z. The results are output in polar form:

root_pol -r < data.z | x2x +a 2

SIN Speech Signal Processing Toolkit SIN 171

NAME

sin – generate sinusoidal sequence

SYNOPSIS

sin [–l L] [–p P] [–m M]

DESCRIPTION

sin generates a discrete sin wave sequence of period P, length L and magnitude M of the
form,

x(n) = M · sin
(
2π
P
· n

)
,

and sends the result to standard output.

Both input and output data are in float format.

OPTIONS

–l L length
If L ≤ 0, sin values will be generated indefinitely.

[256]

–p P period [10.0]
–m M magnitude [1.0]

EXAMPLE

In the following example, a sin wave sequence is parsed through a Blackman window
and the results are displayed the results on the screen:

sin -p 12.3 | window | fdrw | xgr

SEE ALSO

impulse, step, train, ramp

172 SMCEP Speech Signal Processing Toolkit SMCEP

NAME

smcep – mel-cepstral analysis using 2nd order all-pass filter(15; 16)

SYNOPSIS

smcep [–a A] [–t t] [–T T] [–s s] [–m M] [–l L] [–q Q]
[–i I] [–j J] [–d D] [–e e] [–E E] [–f F] [infile]

DESCRIPTION

smcep calculates the mel-cepstral coefficients from L-length framed windowed input data
from infile (or standard input), sending the result to standard output. The analysis uses a
second-order all-pass function raised to the 1/2 power 1/2 :

A(z) =
(

z−2 − 2α cos θz−1 + α2

1 − 2α cos θz−1 + α2z−2

) 1
2

,

z̃−1 =
z−1 − α

1 − αz−1 .

Input and output data are in float format.

In the mel-cepstral analysis using a 2nd-order all pass function, the speech spectrum is
modeled as m-th order cepstral coefficients c(m) as follows.

H(z) = exp
M∑

m=0

c(m) Bm(e jω)

where

Re
[
Bm(e jω)

]
=

Am(e jω) + Am(e− jω)
2

The Newton-Raphson method is applied to calculate the mel-cepstral coefficients through
the minimization of the cost function.

SMCEP Speech Signal Processing Toolkit SMCEP 173

OPTIONS

–a A all-pass constant α [0.35]
–t t emphasized frequency θ ∗ π (rad) [0]
–T T emphasized frequency (Hz) [0]
–s s sampling frequency (kHz) [10]
–m M order of mel cepstrum [25]
–l L1 frame length [256]
–L L2 ifft size for making matrices [1024]
–q Q input data style

Q = 0 windowed data sequence
Q = 1 20 × log | f (w)|
Q = 2 ln | f (w)|
Q = 3 | f (w)|
Q = 4 | f (w)|2

[0]

Usually, the options below do not need to be assigned.
–i I minimum iteration of Newton-Raphson method [2]
–j J maximum iteration of Newton-Raphson method [30]
–d D end condition of Newton-Raphson [0.001]
–e e small value added to periodogram [0]
–E E floor in db calculated per frame [N/A]
–f F mimimum value of the determinant of the normal matrix [0.000001]

EXAMPLE

In the example below, speech data is read in float format from data.f, analyzed, and
resulting mel-cepstral coefficients are written to data.mcep:

frame < data.f | window | smcep > data.mcep

SEE ALSO

uels, gcep, mcep, mgcep, mlsadf

174 SNR Speech Signal Processing Toolkit SNR

NAME

snr – evaluate SNR and segmental SNR

SYNOPSIS

snr [–l L] [–o O] file1 [infile]

DESCRIPTION

srn calculates the SNR (Signal to Noise Ratio) and the SNRseg (segmental SNR) between
corresponding L-length frames of file1 and infile (or standard input), sending the result
to standard output. The output format is specified by the –o option.

The SNR and SNRseg are calculated through the following equations.

SNR = 10 log

∑
n

{x(n)}2∑
n

{e(n)}2
[dB]

SNRseg =
1
Ni

Ni∑
i=1

SNRi [dB]

where
e(n) = x1(n) − x2(n)

The number of frames is represented by Ni. For signals with small amplitudes, such as
consonant sounds, the segmental SNR represents a better subjective measure than the
SNR.

SNR Speech Signal Processing Toolkit SNR 175

OPTIONS

–l L frame length [256]
–o O output data format

0 SNR and SNRseg
1 SNR and SNRseg in detail
2 SNR
3 SNRseg

if 0 or 1 are assigned
the output data is written in ASCII format.
if 2 or 3 are assigned
the output data is written in float format

[0]

EXAMPLE

The following command reads the input files data.f1 and data.f2, evaluates the SNR and
segmental SNR, and sends the results to the standard output:

snr data.f1 data.f2

SEE ALSO

histogram, average, rmse

176 SOPR Speech Signal Processing Toolkit SOPR

NAME

sopr – execute scalar operations

SYNOPSIS

sopr [–a A] [–s S] [–m M] [–d D] [–f F] [–c C] [–magic magic]

[–MAGIC MAGIC] [–ABS] [–INV] [–P] [–R] [–SQRT] [–LN]

[–LOG2] [–LOG10] [–EXP] [–POW2] [–POW10] [–FIX] [–UNIT]

[–CLIP] [–SIN] [–COS] [–TAN] [–ATAN] [–r mn] [–w mn] [infile]

DESCRIPTION

sopr performs a sequence of scalar operations on float data from infile (or standard input),
sending the float output data to standard output.

The sequence of operations is specified by command line options and is performed in
the given order.

OPTIONS

–a A addition y = x + A [FALSE]
–s S subtraction y = x − S [FALSE]
–m M multiplication y = x ∗ M [FALSE]
–d D division y = x/D [FALSE]
–f F flooring y = F if x < F [FALSE]
–c C ceiling y = C if x > C [FALSE]
–magic magic remove magic number [FALSE]
–MAGIC MAGIC replace magic number by MAGIC

if -magic option is not given, return error.
if -magic or -MAGIC option is given multiple
times, also return error.

[FALSE]

If the argument of the above operation option given is “dB”, “cent” or “octave” then
the values 20/ loge 10, 1200/ loge 2 or 1/ loge 2 are assigned, respectively. Likewise, if
“pi” is written after the operation option, then its value will be used. Expression such as
“ln2”, “exp10”, “sqrt30” can also be used as arguments.

–ABS absolute y = |x| [FALSE]
–INV inverse y = 1/x [FALSE]
–P square y = x2 [FALSE]
–R square root y =

√
x [FALSE]

–SQRT square root y =
√

x [FALSE]
–LN logarithm y = log x [FALSE]
–LOG2 logarithm y = log2 x [FALSE]
–LOG10 logarithm y = log10 x [FALSE]

SOPR Speech Signal Processing Toolkit SOPR 177

–EXP exponential y = exp x [FALSE]
–POW2 power of 2 y = 2x [FALSE]
–POW10 power of 10 y = 10x [FALSE]
–FIX round (int)x [FALSE]
–UNIT unit step u(x) [FALSE]
–CLIP clipping x ∗ u(x) [FALSE]
–SIN sin y = sin(x) [FALSE]
–COS cos y = cos(x) [FALSE]
–TAN tan y = tan(x) [FALSE]
–ATAN atan y = atan(x) [FALSE]
–r mn read from memory register mn (n = 0..9)
–w mn write from memory register mn (n = 0..9)

EXAMPLE

In the following example, a ramp function (0, 1, 2, . . .) is multiplied by 2 (0, 2, 4, . . .) and
then 1 is added (1, 3, 5, . . .):

ramp | sopr -m 2 -a 1 | dmp +f

The output file data.avrg contains the mean taken from data in files data.f1 and data.f2
read in float format:

vopr -a data.f1 data.f2 | sopr -d 2 > data.avrg

In the following examples, data is read in float format from data.f, and the results in dB
are written to the output file:

sopr data.f -LN -m dB | dmp +f

sopr data.f -LOG10 -m 20 | dmp +f

In the following, the results in cent are written to the output file:

sopr data.f -LN -m cent | dmp +f

sopr data.f -LOG2 -m 1200 | dmp +f

The following example replace the number 0 by 1.0. While the -Magic option is not
given, skip any operations at the magic number.

sopr data.f -magic 0 -m 4.0 -INV -MAGIC 1.0 | dmp +f

If we want to evaluate the following equation,

y = (1 + 3x + 4x2)/(1 + 2x + 5x2)

then memory registers can be used as follows.

178 SOPR Speech Signal Processing Toolkit SOPR

sopr data.f -w m0 -m 5 -a 2 -m m0 -a 1 -w m1 \

-r m0 -m 4 -a 3 -m m0 -a 1 -d m1 | dmp +f

In the example above, m0 and m1 are memory registers. Registers from m0 to m9 can
be used. The –w option is used to write into a memory register, while the –r option is
used to read from a register.

SEE ALSO

vopr, vsum

SPEC Speech Signal Processing Toolkit SPEC 179

NAME

spec – transform real sequence to log spectrum

SYNOPSIS

spec [–l L] [–m M] [–n N] [–z zfile] [–p pfile]
[–e e] [–E E] [–o O] [infile]

DESCRIPTION

spec computes the log spectrum magnitude of framed windowed input data from infile
(or standard input), and sends the result to standard output.

Alternatively, given the poles (–p pfile option) and zeroes (–z zfile option) of a digital
filter, spec computes the frequency response of that filter.

The output format is specified by the –y option.

If the input sequence is given by

x(0), x(1), . . . , x(L − 1)

and the FFT algorithm is used to evaluate

Xk = X(e jω)

∣∣∣∣∣∣ ω = 2πk
L

=

L−1∑
m=0

x(m)e− jωm

∣∣∣∣∣∣ ω = 2π k
L
, k = 0, 1, . . . , L − 1

then if the –y option is applied, the output will be

Yk = 20 log10 |Xk|, k = 0, 1, . . . , L/2

The output data corresponds to angular frequencies varying from 0 ∼ π. Input and output
data are in float format.

If the –p and –z options are assigned then the phase of the corresponding filter related to
the assigned coefficients is calculated 2.

OPTIONS

–l L FFT window length
L must be power of 2

[256]

–m M order of MA part
In the case where the number of input data values is less then
M + 1, then M is made equal to the number of input data
values −1. You don’t need to assign a value to M in case
there is no need to for the data to be analyzed in blocks of
size M + 1.

[0]

2 In this case the phase is not evaluated from the filter impulse response, the phase is evaluated from the difference
between the numerator and denominator phases

180 SPEC Speech Signal Processing Toolkit SPEC

–n N order of AR part
Similarly to the –m option, in the case where the number of
input data values is less then N + 1, then N is made equal to
the number of input data values −1. You don’t need to assign
a value to N in case there is no need to for the data to be
analyzed in blocks of size N + 1.

[0]

–z z f ile MA coefficients filename
The zfile should contain the following structure in float for-
mat:

b(0), b(1), . . . , b(N)

[NULL]

–p p f ile AR coefficients filename
The pfile should contain the following structure in float for-
mat:

K, a(1), . . . , a(M)

[NULL]

–e e small value for calculating log() [0.0]
–E E floor in db calculated per frame [N/A]
–o O output format

O = 0 20 × log |Xk| k = 0, 1, . . . , L/2
O = 1 ln |Xk| k = 0, 1, . . . , L/2
O = 2 |Xk| k = 0, 1, . . . , L/2
O = 3 |Xk|2 k = 0, 1, . . . , L/2

[0]

The contents of pfile and zfile should be in a similar form to that used in the dfs command.
When only the –p option is assigned, the denominator is set to 1. When only the –z
option is assigned, the numerator and the gain K are set to 1. If neither –p nor –z are
assigned, data is read from the standard input.

EXAMPLE

In the example below, a pulse train excitation is passed through digital filter and Black-
man window. The log spectrum magnitude is, thus, evaluated and plotted on the screen:

train -p 50 | dfs -a 1 0.9 | window | spec | fdrw | xgr

This example evaluates the frequency response of a digital filter with coefficients speci-
fied in data.p and data.z in float format:

spec -p data.p -z data.z | fdrw | xgr

A similar result can be obtained with the following command, for a stable filter:

impulse | dfs -p data.p -z data.z | spec | fdrw | xgr

SPEC Speech Signal Processing Toolkit SPEC 181

SEE ALSO

phase, fft, fftr, dfs

182 STEP Speech Signal Processing Toolkit STEP

NAME

step – generate step sequence

SYNOPSIS

step [–l L] [–n N] [–v V]

DESCRIPTION

step generates a step sequence of length L, sending the result to standard output.

The output is in float format, as follows.

V,V,V, . . . ,V︸ ︷︷ ︸
L

OPTIONS

–l L length
In the case where L ≤ 0, step values will be generated indefinitely.

[256]

–n N order [255]
–v V step value [1.0]

EXAMPLE

In the following example, the unit step sequence is passed through a digital filter and
sent to the standard output:

step | dfs -a 1 -0.8 | dmp +f

SEE ALSO

impulse, train, ramp, sin

SWAB Speech Signal Processing Toolkit SWAB 183

NAME

swab – swap bytes

SYNOPSIS

swab [–S S 1] [–s S 2] [–E E1] [–e E2] [+type] [infile]

DESCRIPTION

swab changes the byte order (from big-endian to little-endian or vice versa) of the input
data from infile (or standard input), and sends the result to standard output.

The range of input data that is changed can be restricted with the –S, –E or –s, –e options.

The +type option specifies the input and output data formats.

OPTIONS

–S S 1 start address [0]
–s S 2 start offset number [0]
–E E1 end address [EOF]
–e E2 end offset number [0]
+type Input and output data format

s short (2 bytes) S unsigned short (2 bytes)
i3 int (3 bytes) I3 unsigned int (3 bytes)
i int (4 bytes) I unsigned int (4 bytes)
l long (4 bytes) L unsigned long (4 bytes)
le long long (8 bytes) LE unsigned long long (8 bytes)
f float (4 bytes) d double (8 bytes)

[s]

EXAMPLE

In the example below, the byte order of the file data.f in float format is changed and
written to data.swab:

swab +f data.f > data.swab

184 SYMMETRIZE Speech Signal Processing Toolkit SYMMETRIZE

NAME

symmetrize – symmetrize the sequence of data

SYNOPSIS

symmetrize [–l L] [–o o] [infile]

DESCRIPTION

symmetrize symmetrizes the sequence of L/2-length of input data from infile (or standard
input) and sends the result to standard output. The value of L must be even number. The
output format is specified by the -o option. If the file length is not a multiple of L/2,
leftover values are discarded as shown in the example below.

Input sequence x(0), x(1), . . . , x(L/2 − 1)

OPTIONS

–l L frame length [256]
–o o output format

o = 0 x(0), x(1), . . . , x(L/2 − 1), x(L/2 − 2), . . . , x(2), x(1)
o = 1 x(L/2 − 1), x(L/2 − 2), . . . , x(1), x(0), x(1), . . . , x(L/2 − 1)
o = 2 x(L/2 − 1)/2, x(L/2 − 2), . . . , x(1), x(0), x(1), . . . , x(L/2 − 1)/2

[0]

EXAMPLE

Let’s assume that the following data is read from data.in file in float format.

0.0, 1.0, 2.0, 3.0︸ ︷︷ ︸, 4.0

The command

symmetrize -l 8 -o 1 data.in > data.out

will write the following output to data.out.

3.0, 2.0, 1.0, 0.0, 1.0, 2.0, 3.0︸ ︷︷ ︸

TRAIN Speech Signal Processing Toolkit TRAIN 185

NAME

train – generate pulse sequence

SYNOPSIS

train [–l L] [–p P]

DESCRIPTION

train generates a normalized pulse train sequence or a sequence with values ±1, and
sends the result to standard output. Output data is in float format.

OPTIONS

–l L sequence length [256]
–p P frame period (P ≥ 1.0)

if P = 0.0 a sequence with values ±1 is generated.
[0.0]

–n N type of normalization
If x(n) is the impulse sequence, then:

0 no-normalization

1 normalization as
L−1∑
n=0

x2(n) = 1

2 normalization as
L−1∑
n=0

x(n) = 1

[1]

EXAMPLE

The following example displays the spectrum of the signal obtained from passing a train
pulse sequence through a digital filter:

train | dfs -b 1 0.9 | window | spec | fdrw | xgr

SEE ALSO

impulse, sin, step, ramp

186 TRANSPOSE Speech Signal Processing Toolkit TRANSPOSE

NAME

transpose – transpose a matrix

SYNOPSIS

transpose [–m m] [–n n] [infile]

DESCRIPTION

transpose assumes the input data from infile (or standard input) as m × n matrix and
transposes the matrix to n × m matrix. Then, sends the result to standard output. You
have to define the number of rows and columns and if the file length is not a multiple of
m × n, leftover values are discarded as shown in the example below.

Input sequence

x(0, 0) , x(0, 1) , . . . , x(0, n − 1) ,
x(1, 0) , x(1, 1) , . . . , x(1, n − 1) ,
...

...
...

x(m − 1, 0) , x(m − 1, 1) , . . . , x(m − 1, n − 1)

Output sequence

x(0, 0) , x(1, 0) , . . . , x(m − 1, 0) ,
x(0, 1) , x(1, 1) , . . . , x(m − 1, 1) ,
...

...
...

x(0, n − 1) , x(1, n − 1) , . . . , x(m − 1, n − 1)

OPTIONS

–m m number of rows [N/A]
–n n number of columns [N/A]

EXAMPLE

Let’s assume that the following data is read from data.in file in float format.

0.0, 1.0, 2.0︸ ︷︷ ︸, 3.0, 4.0, 5.0︸ ︷︷ ︸, 6.0

The command

transpose -m 2 -n 3 data.in > data.out

will write the following output to data.out.

0.0, 3.0︸ ︷︷ ︸, 1.0, 4.0︸ ︷︷ ︸, 2.0, 5.0︸ ︷︷ ︸

UELS Speech Signal Processing Toolkit UELS 187

NAME

uels – unbiased estimation of log spectrum(2; 3)

SYNOPSIS

uels [–m M] [–l L] [–q Q] [–i I] [–j J] [–d D] [–e e] [–E E] [infile]

DESCRIPTION

uels uses the unbiased estimation of log spectrum method to calculate cepstral coeffi-
cients c(m) from L-length framed windowed input data from infile (or standard input),
sending the result to standard output.

Input and output data are in float format.

Until the proposition of the unbiased estimation of log spectrum method, the conven-
tional methods had two main problems. The importance of smoothing the log spectrum
was not clear and it could not be guaranteed that the bias of the estimated value would
be sufficiently small.

The evaluation procedure to obtain the unbiased estimation log spectrum values is similar
to other improved methods to calculate cepstral coefficients. The main difference is that
in UELS method a non-linear smoothing is used to guarantee that the estimation will be
unbiased.

OPTIONS

–m M order of cepstrum [25]
–l L frame length [256]
–q Q input data style

Q = 0 windowed data sequence
Q = 1 20 × log | f (w)|
Q = 2 ln | f (w)|
Q = 3 | f (w)|
Q = 4 | f (w)|2

[0]

Usually, the options below do not need to be assigned.
–i I minimum iteration [2]
–j J maximum iteration [30]
–d D end condition [0.001]
–e e small value added to periodogram [0.0]
–E E floor in db calculated per frame [N/A]

EXAMPLE

The example below reads data in float format, evaluates 15-th order log spectrum through
UELS method, and sends spectrum coefficients to data.cep:

188 UELS Speech Signal Processing Toolkit UELS

frame < data.f | window | uels -m 15 > data.cep

SEE ALSO

gcep, mcep, mgcep, lmadf

ULAW Speech Signal Processing Toolkit ULAW 189

NAME

ulaw – µ-law compress/decompress

SYNOPSIS

ulaw [–v V] [–u U] [–c] [–d] [infile]

DESCRIPTION

ulaw converts data between 8-bit µ-law and 16-bit linear formats. The input data is infile
(or standard input), and the output is sent to standard output.

If the input is x(n), the output is y(n), the largest value of input data is V , the compression
coefficients vector is U, then the compression will be performed using made through the
following equation.

y(n) = sgn(x(n))V
log(1 + U |x(n)|

V)
log(1 + U)

Likewise, the decompression can be performed by applying the following:

y(n) = sgn(x(n))V
(1 + u)|x(n)|/V − 1

U

OPTIONS

–v V maximum value of input [32768]
–u U compression ratio [256]
–c coder mode [TRUE]
–d decoder mode [FALSE]

EXAMPLE

In the following, 16-bit data read from data.s is compressed to 8-bit ulaw format, and
output to data.ulaw

x2x +sf data.s | ulaw | sopr -d 256 | x2x +fc -r > data.ulaw

190 US Speech Signal Processing Toolkit US

NAME

us – up-sampling

SYNOPSIS

us [–s S] [–c file] [–u U] [–d D] [infile]

DESCRIPTION

us up-samples data from infile (or standard input), sending the result to standard output.

The format of input and output data is float. The following filter coefficients can be used.

S = 23F $SPTK/share/SPTK/lpfcoef.2to3f
S = 23S $SPTK/share/SPTK/lpfcoef.2to3s
S = 34 $SPTK/share/SPTK/lpfcoef.3to4
S = 45 $SPTK/share/SPTK/lpfcoef.4to5
S = 57 $SPTK/share/SPTK/lpfcoef.5to7
S = 58 $SPTK/share/SPTK/lpfcoef.5to8

($SPTK is the directory where toolkit was installed.)

The ratio between up-sampling and down-sampling can be modified by the –u and –d
options respectively. If you want to specify filter coefficients, –c should also be specified.

Filter coefficients are in ASCII format.

For up-sampling from 10 or 12 to 16kHz, the us16 command can be used. For up/down-
sampling between 8, 10, 12 or and 11.025, 22.05 or 44.1 kHz, the uscd command can be
used. The ds command may also be used for down-sampling.

OPTIONS

–s S conversion type

S = 23F up-sampling by 2 : 3
S = 23S up-sampling by 2 : 3
S = 34 up-sampling by 3 : 4
S = 45 up-sampling by 4 : 5
S = 57 up-sampling by 5 : 7
S = 58 up-sampling by 5 : 8

[58]

–c file filename of low pass filter coefficients [Default]
–u U up-sampling ratio [N/A]
–d D down-sampling ratio [N/A]

EXAMPLE

In this example, the speech data in the input file data.16, which was sampled at 16 kHz
in short int format, is converted to an 44.1 kHz sampling rate:

US Speech Signal Processing Toolkit US 191

x2x +sf data.16 | us -s 23F | us -s 23S | us -s 57 | \

us -c /usr/local/SPTK/lib/lpfcoef.5to7 -u 7 -d 8 | \

x2x +fs > data.44

Note:
44100
16000

=
3 × 3 × 7 × 7 × 100
2 × 2 × 5 × 8 × 100

SEE ALSO

ds, uscd, us16

192 US16 Speech Signal Processing Toolkit US16

NAME

us16 – up-sampling from 10 or 12 kHz to 16 kHz

SYNOPSIS

us16 [–s S] [infile] [outfile]
us16 [–s S] infile1 . . . [infileN] outdir

DESCRIPTION

us16 upsamples data from 10 kHz or 12 kHz to 16 kHz. If the arguments infile and
outfile are not given, standard input and standard output are used. If several input files
are given, the last argument is considered as a directory name and multiple output files
are created in that directory, with names similar to the input file names but with file
extensions changed to “.16”.

OPTIONS

–s S input sampling frequency 10—12 kHz [10]

EXAMPLE

In the example below, speech data sampled at 10 kHz is read from data.10, upsampled
to 16 kHz, and the results are written to data.16:

us16 -s 10 < data.10 > data.16

SEE ALSO

ds, us, uscd

USCD Speech Signal Processing Toolkit USCD 193

NAME

uscd – up/down-sampling from 8, 10, 12, or 16 kHz to 11.025, 22.05, or 44.1 kHz

SYNOPSIS

uscd [–s S S] [infile] [outfile]
uscd [–s S S] infile1 . . . [infileN] outdir

DESCRIPTION

uscd converts the sample rate from one of 8, 10, 12, or 16 kHz to one of 11.025, 22.04,
or 44.1 kHz. If infile and outfile arguments are not given, standard input and output are
used. If the last argument given names a directory, each of the preceding argument files
is re-sampled. The results are stored in multiple files in that directory, with base names
the same as the input file base names, but with extensions indicating the new sample rate.

OPTIONS

–s S 1 input sampling frequency (one of 8, 10, 12 or 16) [10]
–S S 2 output sampling frequency (one of 11.025, 22.05, or 44.1)

S 2 can be abbreviated as 11, 22, or 44.
If the last command line argument is a directory name, the suffix
for the output files is either “.11”, “.22”, or “.44.”

[11.025]

EXAMPLE

In the example below, speech data sampled at 16 kHz is read from data.16, upsampled
to 22.05 kHz, and the results are written to data.22:

uscd -s 16 22.05 < data.16 > data.22

SEE ALSO

ds, us, us16

194 VOPR Speech Signal Processing Toolkit VOPR

NAME

vopr – execute vector operations

SYNOPSIS

vopr [–l L] [–n N] [–i] [–a] [–s] [–m] [–d] [–ATAN2] [–AM] [–GM]
[–gt] [–ge] [–lt] [–le] [–eq] [–ne] [file1] [infile]

DESCRIPTION

This command performs vector operations in input files. In other words

file1 first vector file (if it is not assigned then stdin)

infile second vector file (if it is not assigned then stdin)

the first file gives the operation vectors a and the second file gives the operation vectors
b. The assigned operation is undertaken and the results are sent to the standard output.

Input and output data are in float format.

The undertaken action depends on the number of assigned files as well as the vector
lengths as exemplified in the following.

If two files are assigned (when only one file is assigned, it is assumed that it corresponds
to infile) then, depending on the vector sizes, the following actions are taken.

when L = 1
file1 (stdin) a1 a2 . . . ai . . .

infile b1 b2 . . . bi . . .

Output (stdout) y1 y2 . . . yi . . .
One data from one file corresponds to one data on the other file.

when L ≥ 2
file1 (stdin) a11,. . . ,a1L a21,. . . ,a2L a31,. . . ,a3L a41,. . .

infile b1,. . . ,bL

Output (stdout) y11,. . . ,y1L y21,. . . ,y2L y31,. . . ,y3L y41,. . .
In this case, the operation vector is read only once from infile, and the opera-
tions are recursively performed.

When the information related to a and b is contained in a single file, (if only one file is
assigned, or if no file assignment is made), the –i option should be used and the action
does not depend on the vector length.

when L ≥ 1
file (stdin) a11,. . . ,a1L b11,. . . ,b1L a21,. . . ,a2L b21,. . . ,b2L

Output (stdout) y11,. . . ,y1L y21,. . . ,y2L

Input vectors are read from a single file.

VOPR Speech Signal Processing Toolkit VOPR 195

OPTIONS

–l L length of vector [1]
–n N order of vector [L-1]
–i when a single file file is specified, the file contains a and

b.
[FALSE]

–a addition yi = ai + bi [FALSE]
–s subtraction yi = ai − bi [FALSE]
–m multiplication yi = ai ∗ bi [FALSE]
–d division yi = ai/bi [FALSE]
–ATAN2 atan2 yi = atan 2(bi, ai) [FALSE]
–AM arithmetic mean yi = (ai + bi)/2 [FALSE]
–GM geometric mean yi =

√
ai ∗ bi [FALSE]

–c choose smaller value [FALSE]
–f choose larger value [FALSE]
–gt decide “greater than” [FALSE]
–ge decide “greater than or equal” [FALSE]
–lt decide “less than” [FALSE]
–le decide “less than or equal” [FALSE]
–eq decide “equal to” [FALSE]
–ne decide “not equal to” [FALSE]

EXAMPLE

The output file data.c contains addition of vectors in float format read from data.a and
data.b:

vopr -a data.a data.b > data.c

In the following example, a sin wave is passed through a window with length 256 and
coefficients given from data.w:

sin -p 30 -l 1000 | vopr data.w -l 256 -m | fdrw | xgr

Similar results as from the above example can be obtained using the following: Here, it
is considered that the contents of data.w correspond to a Blackman window:

sin -p 30 -l 1000 | window | fdrw | xgr

For other examples, suppose data.a contains

1, 2, 3, 4, 5, 6, 7

in float format and data.b contains

3, 2, 1, 0, 5, 6, 7

in float format. In the following example, smaller scalar values can be taken from data.a
and data.b, and the result is sent to data.c in float format.

196 VOPR Speech Signal Processing Toolkit VOPR

vopr -c data.b < data.a > data.c

The output file data.c contains
1, 2, 1, 0, 5, 6, 7.

When executing following command line,

vopr -ge data.b < data.a > data.c

the output file data.c contains:

0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0

On the other hand, when executing following command line,

vopr -gt data.b < data.a > data.c

the output file data.c contains:

0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0

Moreover, when executing following command line,

vopr -eq data.b < data.a > data.c

the output file data.c contains:

0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0

SEE ALSO

sopr, vsum

VQ Speech Signal Processing Toolkit VQ 197

NAME

vq – vector quantization

SYNOPSIS

vq [–l L] [–n N] [–q] cbfile [infile]

DESCRIPTION

vq uses vector quantization to compress vectors from infile (or standard input) according
to the codebook cbfile, sending either codebook indexes or quantized vectors to standard
output.

For each length L input vector

x(0), x(1), . . . , x(L − 1),

vq finds the codebook vector ci that minimizes the Euclidean distance

di =
1
L

L−1∑
m=0

(x(m) − ci(m))2.

Input data is in float format. If the –q option is given, the output is the code vector
[ci(0), ci(1), · · · , ci(L − 1)] in float format. If the –q option is not given, the output is the
codebook index i in int format.

OPTIONS

–l L length of vector [26]
–n N order of vector [L-1]
–q output quantized vector [FALSE]

EXAMPLE

In this example, a sequence of length 25 is read from data.f in float format. it is quantized
using codebook cbfile, and the results are written to data.vq:

vq -q cbfile < data.f > data.vq

SEE ALSO

ivq, msvq, imsvq, lbg

198 VSTAT Speech Signal Processing Toolkit VSTAT

NAME

vstat – vector statistics calculation

SYNOPSIS

vstat [–l L] [–n N] [–t T] [–c C] [–d] [–o O] [infile]

DESCRIPTION

vstat calculates the mean and covariance of groups of vectors from infile (or standard
input), sending the result to standard output.

For each group of T input vectors of length L, vstat calculates the mean vector of length
L and the L × L covariance matrix. In other words, if the input data is:

T×L︷ ︸︸ ︷
L︷ ︸︸ ︷

x1(1), . . . , x1(L),
L︷ ︸︸ ︷

x2(1), . . . , x2(L), . . . ,
L︷ ︸︸ ︷

xN(1), . . . , xN(L), . . .

then the output will be given by:

L︷ ︸︸ ︷
µ(1), . . . , µ(L),

L×L︷ ︸︸ ︷
L︷ ︸︸ ︷

σ(11), . . . , σ(1L), . . .
L︷ ︸︸ ︷

σ(L1), . . . , σ(LL), . . .

and the values of µ, Σ can be obtained through the following:

µ =
1
N

N∑
k=1

x

Σ =
1
N

N∑
k=1

xx′ − µµ′

If the –d option is given, the length L diagonal of the covariance matrix is outputted
instead of the entire L × L matrix.

If the –o 3 option is specified, vstat also calculates the confidence interval of the mean
via Student’s t-distribution for each dimension, i.e. for each dimension, the confidence
interval can be estimated at the confidence level α (%) satisfying the following condition:

t(α, φ) ≥

∣∣∣∣∣∣∣∣∣
µ(i) − m(i)√

ˆσ(i)
2
/L

∣∣∣∣∣∣∣∣∣ , i = 1, 2, . . . , L

where t(α, φ) is the upper 0.5(100 − α)-th percentile of the t-distribution with φ degrees
of freedom, m(i) is the population mean, ˆσ(i)2 is the unbiased variance. The confidence

VSTAT Speech Signal Processing Toolkit VSTAT 199

level α can be specified by the –c option. The upper and lower bounds u(i) and l(i) can
be written as

u(i) = µ(i) + t(α, L − 1)

√
ˆσ(i)

2

L
,

l(i) = µ(i) − t(α, L − 1)

√
ˆσ(i)

2

L
.

The order of the output is as follows.

L︷ ︸︸ ︷
µ(1), . . . , µ(L),

L︷ ︸︸ ︷
u(1), . . . , u(L),

L︷ ︸︸ ︷
l(1), . . . , l(L)

If the –o 4 option is specified, vstat outputs the median of input vectors of length L. If
the number of vectors is even number, vstat outputs the arithmetic mean of two vectors
of center.

Also, input and output data are in float format.

OPTIONS

–l L length of vector [1]
–n N order of vector [L-1]
–t T number of vector [N/A]
–o O output format

O = 0 mean & covariance
O = 1 mean
O = 2 covariance
O = 3 mean & upper / lower bound of confidence interval

via Student’s t-distribution
O = 4 median

[0]

–c C confidence level of confidence interval (%) [95.00]
–d diagonal covariance [FALSE]
–i output inverse covariance instead of covariance [FALSE]
–r output correlation instead of covariance [FALSE]

EXAMPLE

The output file data.stat contains the mean and covariance matrix taken from the whole
data in data.f read in float format.

vstat data.f > data.stat

In the example below, the mean of 15-th order coefficients vector is taken for every group
of 3 frames and sent to data.av:

200 VSTAT Speech Signal Processing Toolkit VSTAT

vstat -l 15 -t 3 -o 1 data.f > data.av

The output file data.stat contains the mean and upper / lower bound of the confidence
interval (90%) calculated via Student’s t-distribution.

vstat -C 90.0 -o 3 data.f > data.stat

SEE ALSO

average, vsum

VSUM Speech Signal Processing Toolkit VSUM 201

NAME

vsum – summation of vector

SYNOPSIS

vsum [–l L] [–n N] [infile]

DESCRIPTION

vsum calculates the vector sum of groups of N input vectors of length L from infile (or
standard input), sending the result to standard output. That is, if the input data is given
by

N·L︷ ︸︸ ︷
L︷ ︸︸ ︷

a1(1), . . . , a1(L),
L︷ ︸︸ ︷

a2(1), . . . , a2(L), . . . ,
L︷ ︸︸ ︷

aN(1), . . . , aN(L), . . .

then the output is
L︷ ︸︸ ︷

s(1), . . . , s(L), . . .

,where s(n) can be written as

s(n) =
N∑

k=1

ak(n)

Input and output data are in float format.

OPTIONS

–l L order of vector [1]
–n N number of vector [EOD]

EXAMPLE

The output file data.sum contains the summation of the whole data in file data.f read in
float format:

vsum data.f > data.sum

In this example, the norm of 10-th order vectors are evaluated and written to data.n:

sopr data.f -P | vsum -n 10 | sopr -R > data.n

In the next example, 15-th order coefficients vectors are read from data.f, the average for
every 3 frames is evaluated, and output to data.av:

vsum -l 15 -n 3 data.f | sopr -d 3 > data.av

202 VSUM Speech Signal Processing Toolkit VSUM

SEE ALSO

sopr

WAV2RAW Speech Signal Processing Toolkit WAV2RAW 203

NAME

wav2raw – wav (RIFF) to raw

SYNOPSIS

wav2raw [–swab] [–d D] [–n] [–N] [–L] [–R] [+type] [infile]

DESCRIPTION

wav2raw converts file format from wav to raw.

OPTIONS

–swab change endian [FALSE]
–d D destination directory [N/A]
–n normalization with the maximum value

according to bit/sample of the wav file
if max >= 255 (8bit), 32767 (16bit),
8388067 (24bit) or 2147483647 (32bit)

[FALSE]

–N normalization with the maximum value [FALSE]
–L L convert left sound from stereo wav file [FALSE]
–R R convert right sound from stereo wav file [FALSE]
+type output data type

c char (1 byte) C unsigned char (1 byte)
s short (2 bytes) S unsigned short (2 bytes)
i3 int (3 bytes) I3 unsigned int (3 bytes)
i int (4 bytes) I unsigned int (4 bytes)
l long (4 bytes) L unsigned long (4 bytes)
f float (4 bytes) d double (8 bytes)
a ascii

[f]

EXAMPLE

In the following example, the file data.wav is converted to data.raw and normalized with
the maximum value. The output will be saved in the same directory as data.wav unless
the -d option is given:

wav2raw -N data.wav

SEE ALSO

raw2wav, swab

204 WINDOW Speech Signal Processing Toolkit WINDOW

NAME

window – data windowing

SYNOPSIS

window [–l L1] [–L L2] [–n N] [–w W] [infile]

DESCRIPTION

window multiplies, on an element-by-element basis, length L input vectors from infile (or
standard input) by a specified windowing function, sending the result to standard output.

For the input data
x(0), x(1), . . . , x(L1 − 1)

and the windowing function

w(0),w(1), . . . ,w(L1 − 1),

the output is calculated as follows:

x(0) · w(0), x(1) · w(1), . . . , x(L1 − 1) · w(L1 − 1).

If L2 is greater then L1, then 0s are added to the output as follows.

x(0) · w(0), x(1) · w(1), . . . , x(L1 − 1) · w(L1 − 1), 0, . . . , 0︸ ︷︷ ︸
L2

Input and output data are in float format.

OPTIONS

–l L1 frame length of input (L ≤ 2048) [256]
–L L2 frame length of output [L1]
–n N type of normalization

0 no normalization

1 normalization as
L−1∑
n=0

w2(n) = 1

2 normalization as
L−1∑
n=0

w(n) = 1

[1]

–w W type of window

0 Blackman
1 Hamming
2 Hanning
3 Bartlett
4 trapezoid
5 rectangular

[0]

WINDOW Speech Signal Processing Toolkit WINDOW 205

EXAMPLE

This example prints in the screen a sin wave function with period 20 after windowing it
with a Blackman window:

sin -p 20 | window | fdrw | xgr

This example passes the excitation generated through a train pulse by a digital filter,
applies a Blackman windowing function to it, evaluates the log magnitude spectrum
through 512 points FFT, and plots the results on the screen:

train -p 50 | dfs -a 1 0.9 | window -l 50 -L 512 |\

spec -l 512 | fdrw | xgr

SEE ALSO

fftr, spec

206 X2X Speech Signal Processing Toolkit X2X

NAME

x2x – data type transformation

SYNOPSIS

x2x [+type1] [+type2] [% f ormat] [+aN] [–r]

DESCRIPTION

x2x converts data from standard input to a different data type, sending the result to stan-
dard output.

The input and output data type are specified by command line options as described below.

OPTIONS

+type1 input data type [f]
+type2 output data type

both options type1, type2 can be assigned. one of the
options below.

c char (1 byte) C unsigned char (1 byte)
s short (2 bytes) S unsigned short (2 bytes)
i3 int (3 bytes) I3 unsigned int (3 bytes)
i int (4 bytes) I unsigned int (4 bytes)
l long (4 bytes) L unsigned long (4 bytes)
le long long (8 bytes) LE unsigned long long (8 bytes)
f float (4 bytes) d double (8 bytes)
de long double (12 bytes) a ASCII
aN ASCII specifying the column number N

data type is converted from t1(type1) to t2(type2). if t2 is
not assigned then no operation is performed, and the output
file is equal to the input file.

[type1]

–r specify rounding off when a real number is substituted for
an integer

[FALSE]

–o clip by minimum and maximum of output data type if input
data is over the range of output data type. if the -o option
is not given, when the data type lengths are different, the
process will be aborted.

[FALSE]

+a% f ormat specify output format similar to ’printf()’, only if type2 is
ASCII.

[%g]

EXAMPLE

The following example converts data in ASCII format read from data.asc into float for-
mat, and writes the output to data.f:

X2X Speech Signal Processing Toolkit X2X 207

x2x +af < data.asc > data.f

This example reads data in float format from data.f, converts it to ASCII format, and
sends the output to the screen:

x2x +fa < data.f

For example, if the contents of data.f in float format are

1, 2, 3, 4, 5, 6, 7

then the following output is printed to the screen.

1

2

3

4

5

6

7

If for the same data in the example above, the number of columns is assigned:

x2x +fa3 < data.f

the output will be:

1 2 3

4 5 6

7

The output uses the printf command %e format:

x2x +fa%9.4e < data.f

In this example the total number of characters for each number is 11, and the number of
decimal points assigned to 4.

1.0000e+000

2.0000e+000
...

7.0000e+000

SEE ALSO

dmp

208 XGR Speech Signal Processing Toolkit XGR

NAME

xgr – XY-plotter simulator for X-window system

SYNOPSIS

xgr [–s S] [–l] [–rv] [–m] [–bg BG] [–hl HL] [–bd BD]
[–ms MS] [–g G] [–d D] [–t T] [infile]

DESCRIPTION

xgr plots a graph from a sequence of FP5301 plotter commands, displaying the output
on the screen in a new X window.

When the X window is created, the keyboard focus is initially assigned to that new
window, which responds to a limited set of user interactions:

•Changing the window size truncates or expands the area in which the graph is
displayed, but the graph remains the same size (i.e. it is not rescaled to fit the new
window size).

•If the graph is larger than the window, the position within the window can be
changed with “vi” cursor movement commands:

h: left scroll
j: down scroll
k: up scroll
l: right scroll

•To delete the window, type one of the following: “q”,“Ctrl-c”,“Ctrl-d”

OPTIONS

–s S shrink [3.38667]
–l landscape [FALSE]
–rv reverse mode [FALSE]
–m monochrome display mode [FALSE]
–bg BG background color [white]
–hl HL highlight color [blue]
–bd BD border color [blue]
–ms MS mouse color [red]
–g G geometry [NULL]
–d D display [NULL]
–t T window title [xgr]

EXAMPLE

The following example uses fdrw to draw a graph based on data read from data.f, and
sends the output to a X-Window environment:

XGR Speech Signal Processing Toolkit XGR 209

fdrw < data.f | xgr

BUGS

•If the display server does not contain backing store function, then the hidden part
of virtual screen is erased.

•To reduce the waiting time to display graphs, an image of virtual screen is copied
to the memory. If the size assigned by the –g option is too small or if during the
time the graph is being plotted another window is put above the virtual screen, a
part of the virtual screen needs to be erased. The –s option is suggested whenever
the size of the virtual screen should be reduced.

SEE ALSO

fig, fdrw

210 ZCROSS Speech Signal Processing Toolkit ZCROSS

NAME

zcross – zero cross

SYNOPSIS

zcross [–l L] [–n] [infile]

DESCRIPTION

zcross determines the number of zero crossings within each length L input vector, send-
ing the result to standard output as one float number for each input vector.

Input and output data are in float format.

OPTIONS

–l L frame length
if L ≤ 0 then no data output.

[256]

–n normalized by frame length [FALSE]

EXAMPLE

Data in float format is read from data.f, a zero crossing rate is computed, and the results
are written to data.zc:

zcross < data.f > data.zc

SEE ALSO

frame, spec

ZERODF Speech Signal Processing Toolkit ZERODF 211

NAME

zerodf – all zero digital filter for speech synthesis

SYNOPSIS

zerodf [–m M] [–p P] [–i I] [–t] [–k] bfile [infile]

DESCRIPTION

zerodf derives a standard-form FIR (all-zero) digital filter from the coefficients
b(0), b(1), . . . , b(M) in bfile and uses it to filter an excitation sequence from infile (or
standard input) to synthesize speech data, sending the result to standard output.

Input and output data are in float format.

The transfer function H(z) of an FIR filter in standard form is

H(z) =
M∑

m=0

b(m)z−m

OPTIONS

–m M order of coefficients [25]
–p P frame period [100]
–i I interpolation period [1]
–t transpose filter [FALSE]
–k filtering without gain [FALSE]

EXAMPLE

In the following example, Excitation is generated from pitch information read in float
format from data.pitch. It is then passed through a FIR filter with coefficients read from
data.b, and the synthesized speech is written to data.syn:

excite < data.pitch | zerodf data.b > data.syn

SEE ALSO

poledf, lmadf

212 ZERODF Speech Signal Processing Toolkit ZERODF

REFERENCES

[1] S. Imai and Y. Abe, “Spectral envelope extraction by improved cepstral method,” Journal of
IEICE, Vol.J62-A, No.4, pp.217–223, Apr. 1987. (in Japanese)

[2] S. Imai and C. Furuichi, “Unbiased estimation of log spectrum,” Journal of IEICE, Vol.J70-A,
No.3, pp.471–480, Mar. 1987. (in Japanese)

[3] S. Imai and C. Furuichi, “Unbiased estimator of log spectrum and its application to speech
signal processing,” Signal Processing IV: Theory and Applications, Vol.1, pp.203–206, Else-
vier, North-Holland, 1988.

[4] K. Tokuda, T. Kobayashi, S. Shiomoto, and S. Imai, “Adaptive cepstral analysis — Adaptive
filtering based on cepstral representation —,” Journal of IEICE, Vol.J73-A, No.7, pp.1207–
1215, July 1990. (in Japanese)

[5] K. Tokuda, T. Kobayashi, and S. Imai, “Adaptive cepstral analysis of speech,” IEEE Trans.
Speech and Audio Process., Vol.3, No.6, pp.481–488, Nov. 1995.

[6] K. Tokuda, T. Kobayashi, R. Yamamoto, and S. Imai, “Spectral estimation of speech based
on generalized cepstral representation,” Journal of IEICE, Vol.J72-A, No.3, pp.457–465, Mar.
1989. (in Japanese)

[7] T. Kobayashi and S. Imai, “Spectral analysis using generalized cepstrum,” IEEE Trans.
Acoust., Speech, Signal Process., Vol.ASSP-32, No.5, pp.1087–1089, Oct. 1984.

[8] K. Tokuda, T. Kobayashi, and S. Imai, “Generalized cepstral analysis of speech — a unified
approach to LPC and cepstral method,” Proc. ICSLP-90, pp.37–40, Nov. 1990.

[9] T. Fukada, K. Tokuda, T. Kobayashi, and S. Imai, “A study on adaptive generalized cepstral
analysis,” IEICE Spring National Convention, A-150, p.150, Mar. 1990. (in Japanese)

[10] K. Tokuda, T. Kobayashi, T. Fukada, H. Saito, and S. Imai, “Spectral estimation of speech
based on mel-cepstral representation,” Journal of IEICE, Vol.J74-A, No.8, pp.1240–1248,
Aug. 1991. (in Japanese)

[11] K. Tokuda, T. Kobayashi, T. Fukada, and S. Imai, “Adaptive mel-cepstral analysis of speech,”
Journal of IEICE, Vol.J74-A, No.8, pp.1249–1256, Aug. 1991. (in Japanese)

[12] T. Fukada, K. Tokuda, T. Kobayashi, and S. Imai, “An adaptive algorithm for mel-cepstral
analysis of speech,” Proc. ICASSP-92, pp.137–140, Mar. 1992.

213

214 REFERENCES

[13] K. Tokuda, T. Kobayashi, K. Chiba, and S. Imai, “Spectral estimation of speech by mel-
generalized cepstral analysis,” Journal of IEICE, Vol.J75-A, No.7, pp.1124–1134, July 1992.
(in Japanese)

[14] K. Tokuda, T. Kobayashi, T. Masuko, and S. Imai, “Mel-generalized cepstral analysis — a
unified approach to speech spectral estimation,” Proc. ICSLP-94, pp.1043–1046, Sep. 1994.

[15] T. Wakako, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura, “Speech spectral esti-
mation based on expansion of log spectrum by arbitrary basis functions,”, Journal of IEICE,
Vol.J82-D-II, No.12, pp.2203–2211, Dec. 1999. (in Japanese)

[16] C. Miyajima C, H. Watanabe, K. Tokuda, T. Kitamura, and S. Katagiri, “A new approach to
designing a feature extractor in speaker identification based on discriminative feature extrac-
tion,” Speech Communication, Vol.35, No.3, pp.203–218, Oct. 2001.

[17] S. Imai, “Log magnitude approximation (LMA) filter,” Journal of IEICE, Vol.J63-A, No.12,
pp.886–893, Dec. 1987. (in Japanese)

[18] T. Chiba, K. Tokuda, T. Kobayashi, and S. Imai, “Speech synthesis based on mel-generalized
cepstral representation,” IEICE Spring National Convention, A-243, p.243, Mar. 1988. (in
Japanese)

[19] S. Imai, “Cepstral analysis synthesis on the mel frequency scale,” Proc. ICASSP-83, pp.93–
96, Apr. 1983.

[20] S. Imai, K. Sumita, and C. Furuichi, “Mel log spectrum approximation (MLSA) filter for
speech synthesis,” Journal of IEICE, Vol.J66-A, No.2, pp.122–129, Feb. 1983. (in Japanese)

[21] T. Kobayashi, S. Imai, and Y. Fukuda, “Mel generalized-log spectrum approximation
(MGLSA) filter,” Journal of IEICE, Vol.J68-A, No.6, pp.610–611, June 1985. (in Japanese)

[22] K. Koishida, G. Hirabayashi, K. Tokuda, and T. Kobayashi, “A 16kbit/s wideband CELP-
based speech coder using mel-generalized cepstral analysis,” IEICE Trans. Inf. and Syst.,
vol.E83-D, no.4, pp.876–883, Apr. 2000.

[23] K. Tokuda, T. Masuko, T. Yamada, T. Kobayashi, and S. Imai, “An algorithm for speech
parameter generation from continuous mixture HMMs with dynamic features,” Proc.
EUROSPEECH-95, pp.757–760, Sep. 1995.

[24] D. Talkin, “A Robust Algorithm for Pitch Tracking (RAPT),” in Speech Coding & Synthesis,
W. B. Kleijn and K. K. Pailwal (Eds.), Elsevier, pp.495–518, 1995.

[25] A. Camacho, “SWIPE: A Sawtooth Waveform Inspired Pitch Estimator for Speech And Mu-
sic,” Ph.D. Thesis, University of Florida, 116p., 2007.

Block diagram of SPTK commands

Mitch Bradley kindly provided us the following diagram to help users understand and remember
the relationships between the SPTK commands and data representations.

Pit ch

Generalized

 Cepst rum

 Mel

Cepst rum

 Mel

Generalized

 Cepst rum

 Impulse

 Response MLSA

Coef f icients

 PARCOR

 Auto-

Correlat ion
 Spect rum

 Cepst rum

 Cepst ral

 Distance

 LPC

 LSP

Unf ramed F loat Waveform

Framed F loat Waveform

pit chexcite

ignorm

gc2gc

window

f rame

t rainsteprampsinnrandimpulse

mcep
mgcep

smcep

mlsadf c2sp

gcep

agcep

glsadf
amcep

b2mc mc2b

mglsadf

mgc2sp

mgc2mgc

spec

f f t cep

c2ir
cdist

lmadf

lspdf

acorr

acep

c2acr

uels

sopr

poledf

lsp2lpc

lpc2lsp

lspcheck

lpc

lt cdf

par2lpc

levdur

lpc2par

rectangles are digit al f ilt ers

that use the corresponding coef f icients

df2

clip

dfs

delay

names in green

 are programs

(various,

 see below)

circles are data t ypes or

coef f icient vector t ypes

215

216 REFERENCES

INDEX of TOPICS

data operation
bcp, 10
bcut, 12
dmp, 34
fd, 43
merge, 123
minmax, 142
raw2wav, 166
reverse, 167
swab, 183
symmetrize, 184
transpose, 186
wav2raw, 203
x2x, 206

number operation
sopr, 176
vopr, 194

data processing
average, 8
cdist, 18
clip, 20
delta, 27
histogram, 86
linear intpl, 104
nan, 153
pca, 157
pcas, 158
rmse, 168
snr, 174
vstat, 198
vsum, 201

sampling rate transformation
ds, 39
us, 190
us16, 192

uscd, 193

DA transformation
da, 21

plotting graphs
fdrw, 45
fig, 55
glogsp, 68
grlogsp, 78
gseries, 82
gwave, 84
psgr, 163
xgr, 208

signal generation
excite, 41
nrand, 155
ramp, 165
sin, 171
step, 182
train, 185

digital filter
df2, 31
dfs, 32

signal processing
acorr, 3
dct, 23
decimate, 25
delay, 26
fft, 47
fft2, 48
fftcep, 51
fftr, 52
fftr2, 53
frame, 62
freqt, 63

217

218 INDEX OF TOPICS

grpdelay, 81
idct, 87
ifft, 89
ifft2, 90
ifftr, 92
ignorm, 93
impulse, 94
interpolate, 96
levdur, 102
lpc, 109
norm0, 154
phase, 159
pitch, 161
root pol, 169
spec, 179
ulaw, 189
window, 204
zcross, 210

speech analysis and synthesis
excite, 41
frame, 62
pitch, 161
window, 204

speech analysis
acep, 1
agcep, 4
amcep, 6
gcep, 66
mcep, 121
mfcc, 125
mgcep, 134
smcep, 172
uels, 187

speech parameter transformation
b2mc, 9
c2acr, 15
c2ir, 16
c2sp, 17
freqt, 63
gc2gc, 64
gnorm, 77
lpc2c, 110
lpc2lsp, 112

lpc2par, 114
lsp2lpc, 116
lspcheck, 117
mc2b, 120
mgc2mgc, 128
mgc2mgclsp, 130
mgc2sp, 132
mgclsp2mgc, 137
mlsacheck, 147
par2lpc, 156

filters for speech synthesis
glsadf, 70
lmadf, 106
lspdf, 118
ltcdf, 119
mglsadf, 139
mlsadf, 149
poledf, 162
zerodf, 211

vector quantization
extract, 42
imsvq, 95
ivq, 97
lbg, 98
msvq, 152
vq, 197

parameter generation
mlpg, 144

others
bell, 14
echo2, 40

dynamic time warping
dtw, 36

model training
gmm, 72

probability calculation
gmmp, 75

	acep --- adaptive cepstral analysis
	acorr --- obtain autocorrelation sequence
	agcep --- adaptive generalized cepstral analysis
	amcep --- adaptive mel-cepstral analysis
	average --- calculate mean for each block
	b2mc --- transform MLSA digital filter coefficients to mel-cepstrum
	bcp --- block copy
	bcut --- binary file cut
	bell --- ring a bell
	c2acr --- transform cepstrum to autocorrelation
	c2ir --- cepstrum to minimum phase impulse response
	c2sp --- transform cepstrum to spectrum
	cdist --- calculation of cepstral distance
	clip --- data clipping
	da --- play 16-bit linear PCM data
	dct --- DCT-II
	decimate --- decimation (data skipping)
	delay --- delay sequence
	delta --- delta calculation
	df2 --- second order standard form digital filter
	dfs --- digital filter in standard form
	dmp --- binary file dump
	dtw --- dynamic time warping
	ds --- down-sampling
	echo2 --- echo arguments to the standard error
	excite --- generate excitation
	extract --- extract vector
	fd --- file dump
	fdrw --- draw a graph
	fft --- FFT for complex sequence
	fft2 --- 2-dimensional FFT for complex sequence
	fftcep --- FFT cepstral analysis
	fftr --- FFT for real sequence
	fftr2 --- 2-dimensional FFT for real sequence
	fig --- plot a graph
	frame --- extract frame from data sequence
	freqt --- frequency transformation
	gc2gc --- generalized cepstral transformation
	gcep --- generalized cepstral analysis
	glogsp --- draw a log spectrum graph
	glsadf --- GLSA digital filter for speech synthesis
	gmm --- GMM parameter estimation
	gmmp --- calculation of GMM log-probability
	gnorm --- gain normalization
	grlogsp --- draw a running log spectrum graph
	grpdelay --- group delay of digital filter
	gseries --- draw a discrete series
	gwave --- draw a waveform
	histogram --- histogram
	idct --- Inverse DCT-II
	ifft --- inverse FFT for complex sequence
	ifft2 --- 2-dimensional inverse FFT for complex sequence
	ifftr --- inverse FFT for real sequence
	ignorm --- inverse gain normalization
	impulse --- generate impulse sequence
	imsvq --- decoder of multi stage vector quantization
	interpolate --- interpolation of data sequence
	ivq --- decoder of vector quantization
	lbg --- LBG algorithm for vector quantizer design
	levdur --- solve an autocorrelation normal equation using Levinson-Durbin method
	linear_intpl --- linear interpolation of data
	lmadf --- LMA digital filter for speech synthesis
	lpc --- LPC analysis using Levinson-Durbin method
	lpc2c --- transform LPC to cepstrum
	lpc2lsp --- transform LPC to LSP
	lpc2par --- transform LPC to PARCOR
	lsp2lpc --- transform LSP to LPC
	lspcheck --- check stability and rearrange LSP
	lspdf --- LSP speech synthesis digital filter
	ltcdf --- all-pole lattice digital filter for speech synthesis
	mc2b --- transform mel-cepstrum to MLSA digital filter coefficients
	mcep --- mel cepstral analysis
	merge --- data merge
	mfcc --- mel-frequency cepstral analysis
	mgc2mgc --- frequency and generalized cepstral transformation
	mgc2mgclsp --- transform MGC to MGC-LSP
	mgc2sp --- transform mel-generalized cepstrum to spectrum
	mgcep --- mel-generalized cepstral analysis
	mgclsp2mgc --- transform MGC-LSP to MGC
	mglsadf --- MGLSA digital filter for speech synthesis
	minmax --- find minimum and maximum values
	mlpg --- obtains parameter sequence from PDF sequence
	mlsacheck --- check stability of MLSA filter
	mlsadf --- MLSA digital filter for speech synthesis
	msvq --- multi stage vector quantization
	nan --- data check
	norm0 --- normalize coefficients
	nrand --- generate normal distributed random value
	par2lpc --- transform PARCOR to LPC
	pca --- principal component analysis
	pcas --- calculate principal component scores
	phase --- transform real sequence to phase
	pitch --- pitch extraction
	poledf --- all pole digital filter for speech synthesis
	psgr --- XY-plotter simulator for EPSF
	ramp --- generate ramp sequence
	raw2wav --- raw to wav (RIFF)
	reverse --- reverse the order of data in each block
	rmse --- calculation of root mean squared error
	root_pol --- calculate roots of a polynomial equation
	sin --- generate sinusoidal sequence
	smcep --- mel-cepstral analysis using 2nd order all-pass filter
	snr --- evaluate SNR and segmental SNR
	sopr --- execute scalar operations
	spec --- transform real sequence to log spectrum
	step --- generate step sequence
	swab --- swap bytes
	symmetrize --- symmetrize the sequence of data
	train --- generate pulse sequence
	transpose --- transpose a matrix
	uels --- unbiased estimation of log spectrum
	ulaw --- -law compress/decompress
	us --- up-sampling
	us16 --- up-sampling from 10 or 12 kHz to 16 kHz
	uscd --- up/down-sampling from 8, 10, 12, or 16 kHz to 11.025, 22.05, or 44.1 kHz
	vopr --- execute vector operations
	vq --- vector quantization
	vstat --- vector statistics calculation
	vsum --- summation of vector
	wav2raw --- wav (RIFF) to raw
	window --- data windowing
	x2x --- data type transformation
	xgr --- XY-plotter simulator for X-window system
	zcross --- zero cross
	zerodf --- all zero digital filter for speech synthesis
	REFERENCES
	INDEX of TOPICS

